» Sign in / Register

GppCp

(GMPPCP)

Guanosine-5'-[(β,γ)-methyleno]triphosphate, Sodium salt

Cat. No. Amount Price (EUR) Buy / Note
NU-402-5 5 mg59,90 Add to Basket/Quote Add to Notepad
NU-402-25 25 mg182,50 Add to Basket/Quote Add to Notepad
Structural formula of GppCp ((GMPPCP), Guanosine-5'-[(β,γ)-methyleno]triphosphate, Sodium salt)
Structural formula of GppCp

For general laboratory use.

Shipping: shipped on gel packs

Storage Conditions: store at -20 °C
Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 12 months after date of delivery

Molecular Formula: C11H18N5O13P3 (free acid)

Molecular Weight: 521.21 g/mol (free acid)

Exact Mass: 521.01 g/mol (free acid)

CAS#: 13912-93-1, 10470-57-2 (sodium salt)

Purity: ≥ 95 % (HPLC)

Form: solid

Color: white to off-white

Spectroscopic Properties: λmax 252 nm, ε 13.7 L mmol-1 cm-1 (Tris-HCl pH 7.5)

Applications:
Conformational switch of GTPases[1]
Dynamics of protein synthesis[2, 3]
Conformational dynamics of Cdc42[4]

Specific Ligands:

Initiation factor IF2[2]

Initiation factor IF3[3]

BIOZ Product Citations:

Selected References:
[1] Hauryliuk et al. (2008) Cofactor dependent conformational switching of GTPase. Biophys. J. 95:1704.
[2] Grigoriadou et al. (2007) A quantitative kinetic scheme for 70S translation initiation complex formation. J. Mol. Biol. 373:562.
[3] Grigoriadou et al. (2007) The translational fidelity function of IF3 during transition from the 30S initiation complex to the 70S initiation complex. J. Mol. Biol. 373:551.
[4] Loh et al. (1999) Backbone dynamics of inactive, active, and effector-bound Cdc42Hs from measurements of N-15 relaxation parameters at multiple field strengths. Biochemistry-US 38 (39):12547.
Jiménez et al. (2011) Reconstitution and Organization of Escherichia coli Proto-ring Elements (FtsZ and FtsA) inside Giant Unilamellar Vesicles Obtained from Bacterial Inner Membranes . J. Biol. Chem. 286 (13): 11236
Labesse et al. (2011) Structural and functional characterization of the Mycobacterium tuberculosis uridine monophosphate kinase: insights into the allosteric regulation. Nucleic Acids Res. 39 (8):3458.
Mooren et al. (2009) Dynamin2 GTPase and Cortactin Remodel Actin Filaments. J. Biol. Chem. 284 (36):23995.
Loh et al. (2001) An increase in side chain entropy facilitates effector binding: NMR characterization of the side chain methyl group dynamics is Cdc42Hs. Biochemistry-US 40 (15):4590.
Gizachew et al. (2000) Structure of the complex of Cdc42Hs with a peptide derived from p-21 activated kinase. Biochemistry-US 39 (14):3963.
Schweins et al. (1997) The role of the metal ion in the p2l (ras) catalysed GTP-hydrolysis: Mn2+ versus Mg2+. J. Mol. Biol. 266 (4):847.
Dye et al. (1996) Assembly of microtubules from tubulin bearing the nonhydrolyzable guanosine triphosphate analogue GMPPCP [Guanylyl 5'- (beta,gamma-methylenediphosphonate)]: Variability of growth rates and the hydrolysis of GTP. Biochemistry-US 35 (45):14331.
Nag et al. (1995) Identification of the elongation-factor tu binding-site on 70s escherichia-coli ribosomes by chemical cross-linking. Indian J. Biochem. Bio. 32 (6):343.
Jaffe et al. (1993) Oocyte maturation in starfish is mediated by the beta-gamma-subunit complex of a g-protein. J. Cell Biol. 121 (4):775.
Reshetnikova et al. (1992) Crystals of intact elongation factor-tu from thermus-thermophilus diffracting to 1.45-angstrom resolution. J. Cryst. Growth 122 (1-4):360.
Shearwin et al. (1992) Linkage between ligand-binding and control of tubulin conformation. Biochemistry-US 31 (34):8080.
Limmer et al. (1992) Nucleotide binding and GTP hydrolysis by elongation-factor tu from thermus-thermophilus as monitored by proton NMR. Biochemistry-US 31 (11):2970.
Osei et al. (1990) Evidence that the tightly bound magnesium in tubulin is associated with the n-site GTP. FEBS Lett. 276 (1-2):85.
Westermann et al. (1981) Cross-linking of met-trnaf to eif-2-beta and to the ribosomal-proteins s3a and s6 within the eukaryotic initiation complex, eif-2.GMPPCP.met-trnaf.small ribosomal-subunit. Nucleic Acids Res. 9 (10):2387.
Otaka et al. (1974) Inhibitory effect of EF-G and GMPPCP on peptidyl transferase. FEBS Lett. 44 (3):324.
Kuriki (1973) Nature of EF-G-dependent binding of GMPPCP-H-3 to ribosomes. Biochem.Biophys. Res. Commun. 54 (4):1470.