» Sign in / Register

JBScreen Classic

JBScreen Classic is a crystallization kit designed for efficient and flexible screening of crystallization conditions for proteins, peptides, nucleic acids, macromolecular complexes and water-soluble small molecules.

The JBScreen Classic Kits 1-10 cover 240 of the most prominent buffers for protein crystallization. Their compositions result from data mining of several thousands of crystallized proteins. JBScreen Classic represents the statistically most successful buffers that yielded protein crystals suitable for X-ray diffraction.

The JBScreen Classic buffers are principally ordered by type and concentration of the precipitant. This allows easy extraction of all relevant information and is already a first step to a refinement: Once you get a hit, you immediately see the effects of the neighbouring conditions. Subsequent fine tuning of preliminary hits will be much more efficient.

JBScreen Classic comprises 10 kits of 24 unique reagents in the standard 10 ml bulk format.

JBScreen Classic HTS I+II contains the formulations of the JBScreen system, adopted to fit the 96-well format for high throughput crystallization applications. Each JBScreen Classic HTS deep-well block is pre-filled with 96 sterile conditions at 1.7 ml each.


Individual Conditions of all screens are available in 10 ml as well as 100 ml volumes.

Selected Recent Literature Citations of JBScreen Classic

  • Garcia-Rodriguez et al. (2020) The Escherichia coli RnlA–RnlB toxin–antitoxin complex: production, characterization and crystallization. Acta Cryst F 76:31.
  • Sheu-Gruttadauria et al. (2019) Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. The EMBO Journal e101153.
  • Pozzi et al. (2019) Evidence of Destabilization of the Human Thymidylate Synthase (hTS) Dimeric Structure Induced by the Interface Mutation Q62R. Biomolecules DOI:10.3390/biom9040134.
  • Deka et al. (2018) Structural and biochemical studies on the role of active site Thr166 and Asp236 in the catalytic function of D-Serine deaminase from Salmonella typhimurium. Biochem. Biophys. Res. Commun. 504:40.
  • Dall et al. (2018) Structural and functional analysis of cystatin E reveals enzymologically relevant dimer and amyloid fibril states. J. Biol. Chem. 293:13151.
  • Rinaldi et al. (2018) Crystallization and initial X-ray diffraction analysis of the multi-domain Brucella blue light-activated histidine kinase LOV-HK in its illuminated state. Biochem. Biophys. Rep. 16:39.
  • Flores-Ibarra et al. (2018) Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci. Rep. 8:9835.
  • Bernedo-Navarro et al. (2018) Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins 10:108.
  • Zeng et al. (2017) Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife DOI:10.7554/eLife.28619.
  • Oiki et al. (2017) Alternative substrate-bound conformation of bacterial solute-binding protein involved in the import of mammalian host glycosaminoglycans. Sci. Rep. 7:17005.
  • Jansson et al. (2017) The interleukin-like epithelial-mesenchymal transition inducer ILEI exhibits a non-interleukin-like fold and is active as a domain-swapped dimer. J. Biol. Chem. 292:15501.
  • McPhail et al. (2017) The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIβ, PI4KB, through ACBD3. Structure 25:121.
  • Songsiriritthigul et al. (2017) Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Acta Cryst F 73:62.
  • Yokoyama et al. (2017) Large-scale crystallization and neutron crystallographic analysis of HSP70 in complex with ADP. Acta Cryst F 73:555.