Master mix for extremely fast isothermal DNA amplification with green-fluorescent DNA stain
Isothermal Amplification
Cat. No. | Amount | Price (EUR) | Buy / Note |
---|---|---|---|
PCR-393S | 2 x 1,25 ml | 159,20 | Add to Basket/Quote Add to Notepad |
PCR-393L | 10 x 1,25 ml | 636,90 | Add to Basket/Quote Add to Notepad |
For general laboratory use.
Shipping: shipped on gel packs
Storage Conditions: store at -20 °C
store dark
Short term storage (up to 3 months) at 4 °C possible.
Shelf Life: 12 months
Form: liquid
Concentration: 2x conc.
Spectroscopic Properties: λexc 495 nm, λem 520 nm (dye bound to DNA)
Description:
Saphir Bst Turbo GreenMaster is a complete 2x conc. master mix for isothermal amplification of DNA. The mix is based on a genetically enhanced Bst polymerase of the next generation. The mixe is the ideal choice for ultra-fast and robust amplification of DNA at constant temperature (60 to 65 °C). The enzyme shows high strand displacement activity and generates an amplification factor of up to 109 which is comparable to approx. 30 cycles in a PCR assay. The polymerase is 2-3x faster compared to Saphir Bst Polymerase (#PCR-389/#PCR-387) and allows detection of a target gene within 5-10 minutes.
Content:
Saphir Bst Turbo GreenMaster
Saphier Bst Turbo Polymerase, dNTPs, reaction buffer, glycerol, green-fluorescent DNA stain, additives and stabilizers
PCR-grade water
Detection
The mix contains a green-fluorescent DNA stain that intercalates into DNA during the amplification process and allows the direct quantification of target DNA by fluorescence detection (analogous to real-time PCR).
The mix can be combined with ROX reference dye (#PCR-351) to allow a signal normalization in real-time PCR instruments that are compatible with the evaluation of the ROX signal.
Assay design
Isothermal amplification is an extremely sensitive detection method and care should be taken to avoid contamination of set-up areas and equipment with DNA of previous reactions. A problem may be amplification in no-template controls due to carry-over contamination or amplification of unspecifically annealed primers or primer dimer formations.
Primer design
Typically, 4 different primers are used to identify 6 distinct DNA regions allowing the specific amplification of a target gene. An additional pair of primers further accelerates the amplification allowing to cut down the total detection time to 5-10 min.
The manual design of primers may be challenging due to the complex reaction sequence. To simplify the design process the use of a primer design software is recommended.
As sensitivity and non-template amplification of in-silico designed primers may vary, the evaluation of 2 - 4 real primer sets before choosing a final set is recommended.
Assay set-up
A reaction volume of 20-50 μl is recommended for most applications. Pipet with sterile filter tips and perform the set-up in an area separate from DNA preparation or analysis. No-template controls should be included in all amplifications.
First, prepare a 10x conc. primer pre-mix. Second, set-up the isothermal amplification assay:
component | stock conc. | final conc. | 20 μl | 50 μl |
Saphir Bst Turbo GreenMaster | 2x | 1x | 10 μl | 25 μl |
Primer Mix | 10x | 1x | 2 μl | 5 μl |
Template DNA | <500 ng/assay | x μl | x μl | |
PCR-grade Water | fill up to 20 μl | fill up to 50 μl |
Trouble shooting
If amplification in no-template controls occurs the following points should be reviewed.
Cross contamination from environments
Carry-over contamination from previous reaction products
Non-template amplification from primers
Related products:
BIOZ Product Citations: