

Isothermal Reaction and Troubleshooting

LAMP is an extremely sensitive detection method and care should be taken to avoid contamination of set-up areas and equipment with DNA of previous reactions. A common problem with LAMP reactions is amplification in no-template controls due to

- 1. carry-over contamination or
- 2. amplification of unspecifically annealed primers or primer dimer formations.

Protocols

Preparation of a 10 x conc. Primer Mix

primer	stock conc.	final conc. in 10 x	100 µl	500 μl	
F3	100 µM	2 μΜ	2 µl	10 µl	
В3	100 µM	2 µM	2 µl	10 µl	
FIP	100 µM	8-16 μM	8-16 μl	40-80 µl	
BIP	100 µM	8-16 μM	8-16 μl	40-80 µl	
LoopF	100 µM	4-10 μM	4-10 μl	20-50 µl	
LoopB	100 µM	4-10 μΜ	4-10 μl	20-50 µl	
PCR- grade Water			fill up to 100 μl	fill up to 500 μl	

Set-up of the isotherma	I amplification assay
-------------------------	-----------------------

component	stock conc.	final conc. in assay	20 μl	50 μl
Sapphire Bst Buffer *	5 x	1 x	4 μl	10 μl
dNTP Mix	10 mM	1.4 mM	2.8 μl	7 µl
Primer Mix	F3/B3 2 μM FIP/BIP 8-16 μM LoopF/Loop B 4-10 μM	F3/B3 0.2 μM FIP/BIP 0.8- 1.6 μM LoopF/LoopB 0.4-1.0 μM	2 µl	5 µl

Sapphire Bst Polymerase	8 units/μl	0.32 units/μl	0.8 μl	2 µl
MgCl ₂ Stock Solution (#PCR-266) *	25 mM	0-2 mM	0- 1.6 μl	0-4 μl
SYBR Green Fluorescent DNA Stain (#PCR-378)	100 µM	SYBR Green: 1-2 μM	0.2 - 0.4 μl	0.5 - 1.0 μl
PCR-grade Water			fill up to 20 μl	fill up to 50 μl

* Sapphire Bst Buffer already contains 6 mM MgSO₄ in 1 x concentration. A total Mg^{2+} of 6-8 mM in the final assay is recommended.

- Use a LAMP detection instrument or a realtime PCR cycler to run the assays
- Set the instrument to a constant incubation temperature between 60 to 65°C (depending on the primer annealing temperature)
- Measure the fluorescence intensity at an interval of 1 min for up to 30 min.

Troubleshooting

If amplification in no-template controls occurs the following points should be reviewed.

Cross contamination from environments

- Clean equipment and areas with "DNA Away" solution
- Replace reagent stocks and pre-mixes with new components
- Stop reactions at an earlier point of time before non-template amplification occur

Isothermal Reaction and Troubleshooting

Carry-over contamination from previous reaction products

- Avoid opening reaction vessels after amplification
- Use separate preparation area and equipment if post-reaction processing is necessary
- Use a master mix with UNG and dUTP instead of dTTP or add both components separately to the assay to prevent carry-over contamination

Non-template amplification from primers

- Increase incubation temperature stepwise by 1-2°C
- Design a new set of primers for the target sequence

