Mechanism of IFT-A polymerization into trains for ciliary transport

Graphical abstract

Highlights
- Cryo-EM structures of native Leishmania tarentolae IFT-A complexes
- Subcomplex rearrangements enable IFT-A to polymerize into lateral IFT trains
- IFT-A has lipid specificity and can coat liposomes
- Anterograde IFT-A positions cargo-binding β-propellers toward the ciliary membrane

Authors
Shimi Meleppattu, Haixia Zhou, Jin Dai, Miao Gui, Alan Brown

Correspondence
alan_brown@hms.harvard.edu

In brief
Structural analyses reveal how IFT-A, a highly conserved complex that transports transmembrane proteins within cilia, binds membranes and polymerizes into cargo-binding trains.

Meleppattu et al., 2022, Cell 185, 4986–4998
December 22, 2022 © 2022 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2022.11.033
Article

Mechanism of IFT-A polymerization into trains for ciliary transport

Shimi Meleppattu,1,2 Haixia Zhou,1,2 Jin Dai,1 Miao Gui,1 and Alan Brown1,3,*
1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
2These authors contributed equally
3Lead contact
*Correspondence: alan_brown@hms.harvard.edu
https://doi.org/10.1016/j.cell.2022.11.033

SUMMARY

Intraflagellar transport (IFT) is the highly conserved process by which proteins are transported along ciliary microtubules by a train-like polymeric assembly of IFT-A and IFT-B complexes. IFT-A is sandwiched between IFT-B and the ciliary membrane, consistent with its putative role in transporting transmembrane and membrane-associated cargoes. Here, we have used single-particle analysis electron cryomicroscopy (cryo-EM) to determine structures of native IFT-A complexes. We show that subcomplex rearrangements enable IFT-A to polymerize laterally on anterograde IFT trains, revealing a cooperative assembly mechanism. Surprisingly, we discover that binding of IFT-A to IFT-B shields the preferred lipid-binding interface from the ciliary membrane but orients an interconnected network of \(\beta\)-propeller domains with the capacity to accommodate diverse cargoes toward the ciliary membrane. This work provides a mechanistic basis for understanding IFT-train assembly and cargo interactions.

INTRODUCTION

Cilia, or flagella, are protrusions of eukaryotic cells with pleotropic functions that span from cellular motility to the sensation of physical, chemical, and protein signals.1 Ciliogenesis, cilia homeostasis, and the establishment of cilia signaling pathways rely on a dedicated and highly conserved trafficking mechanism called intraflagellar transport (IFT) which shuttles proteins in, out, and within cilia.2 Consistent with the important role of IFT in most cilia functions, defective IFT is associated with a wide range of genetically heterogeneous human diseases including skeletal ciliopathies, polycystic kidney disease, retinal degeneration, and Bardet-Biedl syndrome (BBS).3

Anterograde IFT toward the ciliary tip is powered by kinesin-2,4 whereas retrograde transport is driven by dynein-2.5 These two ATP-consuming motors travel progressively along the outer microtubules of the axoneme at velocities between 2 and 4 \(\mu\)m/s4 while avoiding collisions.6 The majority of IFT cargoes are coupled indirectly to the motors by IFT-A, IFT-B, and the BBSome, which are multisubunit complexes of 6, 16, and 8 subunits, respectively. IFT-B is implicated in trafficking soluble proteins including tubulin7,8 and precursors of axonemal complexes,9–11 whereas the BBSome and IFT-A are thought to transport transmembrane and membrane-associated proteins.12–15 Cargoes are thought to be recognized by the IFT complexes by both direct interactions7,16 and through adaptor molecules.10,13

In the cilium and during assembly at the ciliary base, the IFT complexes assemble with their motors into polymeric assemblies known as “trains.”4,17,18 Anterograde trains are compact structures approximately 200–500 nm in length with clearly defined periodicities, whereas retrograde trains have a less dense zigzag pattern with a longer repeat length.5 Subtomogram averaging has revealed repeating copies of IFT-B form the backbone of the anterograde train and make extensive contacts with dynein-2, which is carried as an inactive passenger.15 IFT-A is situated between IFT-B and the ciliary membrane, where it presumably contacts its transmembrane cargoes. Although IFT-A is substoichiometric relative to IFT-B, it always occurs in linear arrays.16,19

Individual IFT proteins, including four IFT-A subunits, are rich in N-terminal \(\beta\)-propeller domains and C-terminal tetratricopeptide repeats (TPRs). Given that similar domain organizations occur in the subunits of vesicle coatamers (COPI, COPII, and clathrin) and tethering complexes (CORVET, HOPs), it has been proposed that they share an evolutionary relationship.20,21 Mounting evidence supports an extraciliary role for IFT proteins in vesicular trafficking, including localization of IFT46 to the surface of pericyelial vesicles by in situ immunogold labeling22 and the loss of densely coated periciliary vesicles in mouse cells deficient in the IFT-A subunit IFT121.23 How IFT-A binds vesicles, polymerizes into trains, and transitions between these states are unanswered questions of fundamental importance toward a mechanistic understanding of IFT.
Unlike IFT-B,24–30 dynein-2,31 and the BBSome,32–34 structural data for the IFT-A complex are limited. Here, we have used single-particle cryo-EM to determine 3–4 Å resolution structures of native IFT-A complexes. In combination with spatial information from IFT trains in situ and by reconstituting lipid binding in vitro, we reveal the architecture of IFT-A, the mechanism by which IFT-A polymerizes into trains, and the surfaces capable of binding cargoes and membranes.

RESULTS

For a source of native IFT-A, we used *Leishmania tarentolae*, a single-celled uniflagellate of the Kinetoplastida order. Although *L. tarentolae* is not pathogenic to humans, it is closely related to organisms responsible for three major human diseases: leishmaniasis (various *Leishmania* species), African sleeping sickness (*Trypanosoma brucei*), and Chagas disease (*Trypanosoma cruzi*). Their flagella are crucial for their motility, pathogenicity, and viability.25 For these reasons and their amenability to reverse genetics, the Kinetoplastida order has long been used for studies of flagella biology. Microscopy studies have demonstrated that the IFT machinery is conserved between Kinetoplastids and *Chlamydomonas*: both *T. brucei* and *Chlamydomonas reinhardtii* form anterograde trains of similar length (from ~200 nm to more than 500 nm)15,36,37 and velocity (2–2.5 μm/s).36–39 Thin-section transmission electron microscopy revealed IFT trains in *L. tarentolae* flagella (Figure S1A).

To purify the IFT-A complex from *L. tarentolae*, we created a strain expressing FLAG-tagged IFT43, the smallest of the IFT-A subunits. Anti-FLAG affinity purification recovered not only all six IFT-A subunits (IFT43, 121, 122, 139, 140, and 144), but most IFT-B subunits (Table S1A) indicating that IFT-A and -B co-precipitate. To simultaneously improve the purity and stability of the IFT-A complex, we centrifuged the sample through a sucrose gradient containing the chemical crosslinker DTSSP (3,3′-Dithiodi-bis (sulfosuccinimidylpropionate)). Fractions containing IFT-A were pooled from the gradient and purified further using ion-exchange chromatography (Figure S1B). SDS-PAGE analysis (Figure S1C) and mass spectrometry (Table S1B) revealed that the purified sample was almost exclusively IFT-A and that the interaction with IFT-B did not survive the purification process even in the presence of the crosslinker. Two-dimensional classification of particles from negative-stain electron microscopy revealed that the sample contained three major populations (Figure 1A). One population was an elongated particle, approximately 300 Å in length and formed by two subcomplexes, one with a characteristic V shape. An almost identical class was obtained of particles from negative-stain electron microscopy revealed IFT trains in *L. tarentolae* flagella (Figure S1A).

Structure of a monomeric IFT-A complex

To gain a better understanding of the architecture of IFT-A, we used cryo-EM single-particle analysis. Cryo-EM revealed two major populations of intact IFT-A that differed in the orientation of a large α-solenoid protein (IFT139) at one end of the complex (Figure 1B). The structures of these populations were resolved separately to overall resolutions of 4.0 Å (class 1) and 3.6 Å (class 2). Because class 2 had more than twice the number of particles of class 1 and higher resolution, we focused our analysis on this conformational state. Even after separating the large-scale movement of IFT139, other parts of the complex showed a high degree of mobility. By masking, and then combining, specific regions during processing, we generated a composite map with improved local resolution (Figures S1 and S3). The resolved side chains of the map (Figure S3C) allowed unambiguous modeling of all six subunits. High-resolution maps were necessary to confidently distinguish between the similar domain architectures of the IFT121/122/140/144 subunits (Figure 1C). The final atomic model (Figure 1D) is consistent with chemical crosslinking mass spectrometry (XL-MS) data obtained for *Tetrahymena thermophila* IFT-A45 (Figure S4). The few outliers, with distances beyond the crosslinking capabilities of disuccinimidy1 sulf-oxide,41 mostly involve residues within the TPR domains of IFT140 and IFT144, which, as we show later, are capable of large-scale movements.37

Our structure revised a prior description of IFT-A as having core and peripheral subcomplexes.13,42 We found that the IFT-A “core” (IFT122, 140, and 144) actually corresponded to the V-shaped subcomplex and that the “peripheral” subcomplex of IFT43, 121, and 139 also contained IFT122 as an integral component (Figure 1D). Given that neither subcomplex is peripheral to the other, we redefine the core subcomplex as IFT-A1 and the peripheral subcomplex as IFT-A2, reflecting a similar nomenclature used for IFT-B subcomplexes.26 Both subcomplexes have distinctive architectures. The V-shape of the A1 subcomplex is generated by a heterodimer of IFT140/144 in which their tandem β-propeller domains are splayed ~50 Å apart. IFT121/122 form a similar heterodimer in the A2 subcomplex but with their β-propeller domains closed together into a tetrameric arrangement. The heterodimerization of IFT121/122 and IFT140/144 occurs through a common dimerization module that involves an antiparallel interaction between the first five helices of their respective TPR domains (Figures 2A and 2B). This TPR-TPR interaction is different from how subunits with similar domain architectures heterodimerize in COPI coatamers43 and the HOPS complex.44

IFT139, at the bottom of the A2 complex, interacts with IFT122β-prop and the C-terminal TPRs of IFT121 (Figure 2C). The interaction with IFT122β-prop involves the insertion of the positively charged side chain of the penultimate residue of IFT139, R1642, into the center of the β-propeller (Figure 2D). This interaction is likely highly conserved, as a basic residue occurs at or near the end of most IFT139 sequences (Figure 2E). The interaction between IFT139 and IFT121TPR is stabilized by IFT43, which contributes short α-helices to the interface (Figure 2C). The mediatory position of IFT43 explains why *Chlamydomonas* ift43 mutants have barely detectable levels of IFT139.46 In humans, a mutation (W174R) within the IFT121-IFT43 interface (Figure 2F) is associated with a skeletal ciliopathy,45 demonstrating the importance of this interaction for proper IFT-A integrity and function. Notably, only the conserved
The region of IFT43 is resolved in our maps (Figure 2G). The N terminus, which is dispensable for ciliogenesis, is predicted to be unstructured.

The subcomplexes are connected by IFT122TPR, which extends from the A2 subcomplex to engage with the TPR domains of IFT140 and IFT144 at the apex of the V-shaped A1 subcomplex (Figure 2H). This interaction explains why IFT122 can form a stable complex with IFT140/144 in a Chlamydomonas mutant lacking IFT121 and in human cell lines overexpressing fluorescently tagged IFT subunits. To address whether IFT122 would segregate with either the A1 or the A2 subcomplex in their separated forms, we resolved a 3.8-Å resolution structure of the A2 subcomplex alone (Figures S1 E and S3), which revealed IFT122 together with IFT43/121/139 (Figure 1B). In this subcomplex, most of the IFT122TPR domain is not resolved, indicating that the connecting bridge is flexible in the absence of the A1 subcomplex. The isolated A1 subcomplex therefore probably consists of just IFT140/144, consistent with their ability to co-immunoprecipitate in Chlamydomonas ift122 mutants.

In addition to IFT122TPR, the A1 and A2 subcomplexes are associated by an inter-propeller interaction between IFT140β-prop1 and a conserved surface of IFT121β-prop1 (Figure 2I). Another, more labile connection (based on the relative weakness of the density) involves the C terminus of IFT144TPR, which extends from the A1 subcomplex to loosely contact IFT121TPR in the A2 subcomplex (Figure 1D). As described later, both these interactions change when IFT-A polymerizes into anterograde trains. The C terminus of IFT140TPR has no discernable density, indicative of extreme flexibility.

IFT121, IFT122, and IFT144 all terminate with two Cys4 zinc-finger (ZnF) domains, suggesting they share a common evolutionary origin (Figure S5). These ZnF domains are highly conserved, although not all species have two ZnF domains per subunit; human IFT121, for example, lacks the first ZnF domain (Figure S5A). In IFT122, the ZnF domains are separated by a small mixed α/β domain of unknown function (Figures 2H and S5B). Loss of a Zn-coordinating cysteine (C1267Y) in human IFT144 is associated with short-rib thoracic dysplasia, demonstrating that correct folding of the ZnF domain is required for proper IFT-A function. Proteins with similar WD40-TPR architectures were also found to terminate in ZnFs in the membrane-binding GATOR2 complex, where they mediate...
Figure 2. Inter-subunit interactions

(A and B) Antiparallel TPR-TPR interactions are responsible for the heterodimerization of (A) IFT121 and IFT122 in the A2 subcomplex and (B) IFT140 and IFT144 in the A1 subcomplex.

(C) Atomic model (cartoon) and cryo-EM density (mesh) showing the position of IFT43 mediating the interaction between IFT139 and IFT121TPR.

(D) The penultimate residue of IFT139 (R1641) inserts into the center of IFT122prop1.

(E) A basic residue in the ultimate or penultimate position (highlighted in blue) is a conserved feature of IFT139 sequences from *Leishmania tarentolae* (Lt.), *Trypanosoma brucei* (Tb.), *Caenorhabditis elegans* (Ce.), *Tetrahymena thermophila* (Tt.), *Chlamydomonas reinhardtii* (Cr.), and *Homo sapiens* (Hs.).

(F) A model of the interaction between human IFT43 and IFT121 based on the atomic model of Lt. IFT-A. IFT43 W174, which is mutated to an arginine in skeletal ciliopathies,45 inserts into a conserved pocket lined by H177, K969, and V972 (human residue numbering).

(legend continued on next page)
heterodimerization. There is no evidence from our structure to support a similar dimerization function for the ZnF domains of IFT-A.

An atomic model of IFT-A polymerized on an anterograde IFT train

To determine how IFT-A polymerizes during IFT, we docked our atomic model into subtomogram averages of IFT-A from anterograde trains, the best of which has a resolution of 23 Å (Figure 3). The A2 subcomplex can be fitted unambiguously due to its distinctive arrangement of four β-propellers (two each from IFT121 and IFT122) and a large α-solenoid (IFT139) (Figures 3B and 3C). Unexpectedly, the A1 subcomplex shows a substantial conformational rearrangement as a result of polymerization (Figure 3D). It has rotated relative to A2, breaking the inter-propeller contacts between IFT121β-prop1 and IFT140β-prop1 (Video S1). The TPR domain of IFT122 straightens and potentially rigidifies based on the strength of the density, in response to the rotation (Figure 3D, inset). The liberated IFT140 rotates to contact IFT121β-prop2 of its distal neighbor. Despite this movement, the distance between the splayed β-propeller domains of IFT140/144 remains largely unchanged (~50 Å), consistent with a rigid-body motion. By generating lateral contacts between neighboring molecules, the swiveling of the A1 domain is a crucial step in IFT-A polymerization.

We also observed large changes in the positions of the TPR domains of IFT140 and IFT144 on the underside of the IFT-A complex. The C terminus of IFT144TPR is released from its loosely bound position on IFT121TPR to engage IFT121β-prop2 of its distal neighbor (Figures 3D and 3E). This appears to induce ordering of the C-terminal region of IFT140TPR, which curls to interact with IFT144TPR in its new position (Figure 3E). It should be noted that these positions are tentative as accurate modeling of the TPRs was challenging due to the 23 Å resolution of the subtomogram average. The position of IFT144 in the train may explain some of the outlier crosslinks that were incompatible with the model of monomeric IFT-A (Figure S4). TPR-TPR interactions also occur between IFT139 and IFT121 from neighboring complexes. In order for these interactions to occur, IFT139 has rotated further from its position in either state 1 or state 2. The need for IFT139 to be dynamic may explain why we observed multiple states. In conclusion, collective cooperativity provided by multiple lateral interactions explains why IFT-A polymerizes in linear arrays on IFT-B rather than binds sporadically.

To visualize how these IFT-A polymers are oriented on IFT trains, we next docked our atomic model into a composite map of an IFT train assembled at the ciliary base prior to anterograde transport (EMDB: EMD-15281) (Figure 3F). This revealed that IFT-A adopts a slanted configuration on the train relative to IFT-B with a footprint covering approximately three IFT-B complexes. IFT-A is tethered to IFT-B through unassigned densities on either side of the IFT139 subunit (Figure 3G). Candidate IFT-B subunits that might mediate these contacts include IFT70, IFT88, and IFT172 (which crosslink with IFT-A16) and IFT74/81 (which integrative modeling with AlphaFold2 predictions have proposed to be positioned near IFT-A25). Interestingly, these five proteins are the top five IFT-B subunits that copurify with _L. tarentolae_ IFT-A (Table S1A).

The largest unassigned density is between the C terminus of IFT144TPR and IFT139 (Figure 3G). A crucial role for the C terminus of IFT144 in binding IFT-B would agree with recent biochemical evidence from IFT144 truncations. The C terminus of IFT172 has been proposed to bridge IFT144 and IFT139 on anterograde trains, potentially explaining this unassigned density. The link with IFT172 could explain why mutations in IFT17224,25 phenocopy those caused by IFT-A mutants (Table S3).

A consequence of the orientation of IFT-A on the IFT-B polymer is that all six β-propeller domains are on the upper face, closest to the ciliary membrane, and all TPR domains face the IFT-B complex (Figure 3F). The BBSome is also thought to position multiple β-propeller domains toward the ciliary membrane. In the subtomogram average of anterograde IFT-A, we observed additional density above the interface between IFT140β-prop1 and IFT140β-prop2 that cannot be explained by our atomic model (Figure 3A). This density may correspond to a cargo or cargo adapter that is present _in vivo_ but absent from the purified IFT-A used for cryo-EM analysis. A role for the IFT140 β-propeller domains in cargo binding would be consistent with loss of ciliary localization of GTPases, lipid-anchored proteins, and cell-signaling proteins in _Chlamydomonas_ mutants lacking the IFT140 β-propeller domains.

Orientation of IFT-A on membranes

The proposed evolutionary relationship between IFT-A and vesicle-binding coatamers and tethers20,21 and its membrane-proximal location on IFT trains18 support a direct interaction between IFT-A and membranes. Previous work with a recombinant _Chlamydomonas_ IFT-A subcomplex (IFT43/121/139) had identified preferential binding to anionic phosphoglycerates. To test whether native _L. tarentolae_ IFT-A has similar lipid specificity, we used a lipid-protein overlay assay (Figure 4A). Of the 15 lipids tested, only phosphatidic acid (PA) and 3-sulfogalactosylceramide showed binding to IFT-A. Ceramide binding is consistent with the ability of ceramide to pull down IFT complexes from _Chlamydomonas_ flagella. Because PA was also the dominant interaction detected for _Chlamydomonas_ IFT43/121/139 subcomplexes,22 we next tested whether IFT-A could bind PA-containing liposomes. Negative-stain electron microscopy showed partial decoration of the liposome surface but not the formation of cage-like coats (Figure 4B). IFT-A did not decorate liposomes formed without PA (Figure S6). Furthermore, two-dimensional class averaging revealed a consistent mode of attachment of IFT-A to the liposome surface, in which the curvature of the IFT-A complex complements the convex curvature of the liposome (Figure 4C). By overlaying our atomic model onto these class averages (Figure 4D), we could determine the
approximate surfaces that face, and potentially interact, with the membrane. The closest contact is with the apex of the A1 module, which consists of the entwined TPR domains of IFT122, IFT140, and IFT144 (Figure 2C). At the other end of the complex, IFT139 approaches the membrane in some but not all cases (Figure 4B). A role for IFT139 in membrane binding would be consistent with the ability of IFT43/121/139 but not IFT43/121 to bind PA-containing liposomes and PA in protein-lipid overlay.

Figure 3. Organization of polymerized IFT-A in anterograde intraflagellar transport (IFT) trains

(A) A composite subtomogram average (generated by merging repeating copies of EMDB: EMD-2679140) showing C. reinhardtii IFT-A polymerized on an anterograde IFT train and viewed from the ciliary membrane. The repeat unit corresponding to a single IFT-A monomer is colored pink. Additional density (marked with an asterisk) not accounted for by our model is observed above the IFT140-trp domain.

(B) View from the distal end of a train showing the atomic model of C. reinhardtii fit into the subtomogram average.

(C) IFT-A, as in (B), but with each subunit colored.

(D) The A1 subcomplex reorients from its position in the monomeric complex. The arrows show the direction of movement. Rotation of the A1 subcomplex causes the IFT121-trp:IFT140-trp interaction to break, and IFT140-trp to interact with IFT121-trp of the neighboring complex. IFT121-trp straightens in response to these subcomplex rearrangements (inset).

(E) Arrangement of IFT140-trp and IFT144-trp on the underside of the IFT-A complex (viewed from IFT-B). IFT144-trp interacts with the neighboring molecule where it is bound by IFT140-trp.

(F) Two views showing the position of IFT-A (in surface representation) relative to the subtomogram average of IFT-B (EMDB: EMD-15261). IFT-A is predominantly tethered to IFT-B by the IFT139 subunit.

(G) View of IFT-A from IFT-B showing atomic models of IFT139/140/144 (the other subunits are hidden for clarity). Additional density (marked with an asterisk) is seen between the C terminus of IFT144-trp and IFT139.
Figure 4. IFT-A uses TPR domains for membrane attachment

(A) Results of a lipid-strip overlay assay showing that IFT-A has specificity for phosphatidic acid (PA) and 3-sulfogalactosylceramide. Identical results were obtained twice. Lipid abbreviations: PS, phosphatidylserine; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PG, phosphatidylglycerol; PI, phosphatidylinositol.

(B) A negative-stain electron micrograph showing PA-containing liposomes partially coated with IFT-A. The purple circle highlights an IFT-A complex tethered to the membrane only through the A1 subcomplex, whereas the black circle highlights an IFT-A complex tethered through its A1 and A2 subcomplexes. Scale bar, 100 nm.

(C) Two-dimensional (2D) class averages showing a consistent arrangement on IFT-A on the liposome surface.

(legend continued on next page)
a bilobal architecture. However, the A1 and A2 human IFT-A complex, reconstituted from recombinant proteins,
139. Contemporary work reporting the cryo-EM structure of a
allel TPR interactions, before recruiting each other and IFT43/
and IFT140/144 independently heterodimerize through antipar-
elucidated, the structure supports a model where IFT121/122
and A2. Although the IFT-A assembly pathway remains to be
that IFT-A has a bilobal architecture of two subcomplexes, A1

tical TPR surfaces face, and even engage with, IFT-B in anterograde trains rather than the ciliary membrane (Figure 3F), rendering these two binding modes incompatible.

Ciliopathy-associated IFT-A variants reveal potential cargo-binding sites
A structure of IFT-A allowed us to analyze mutations that cause human ciliopathies. First, we exploited the structural conservation of the IFT-A complex and the predictive power of AlphaFold2 to build an atomic model of human IFT-A. Onto this model, we mapped all missense variants in IFT-A that are annotated as either pathogenic or likely pathogenic in the ClinVar database (Figure 5A and Table S3). The mutations are dispersed throughout the structure with all six subunits harboring variants. Most mutations occur within the hydrophobic cores of individual subunits, where they may disrupt complex formation by instigating defective folding pathways. A smaller subset, including IFT43 W174R (Figure 2F), map to inter-subunit interfaces, where they could destabilize complex formation. We also observed 18 mutations occurring at surface-exposed sites (Figure 5B). We speculate that mutation of residues that face the ciliary membrane and occur within conserved regions, such as IFT144 D159 (Figure 5C), may elicit their deleterious effects by disrupting cargo binding rather than IFT-A complex formation.

DISCUSSION
Intraflagellar transport, essential for ciliogenesis and the signaling capabilities of cilia, requires the formation of megadalton polymeric assemblies that transport cargoes to and from the cilium. Here we have used cryo-EM to determine structures of native L. tarentolae IFT-A complexes. The structures revealed that IFT-A has a bilobal architecture of two subcomplexes, A1 and A2. Although the IFT-A assembly pathway remains to be elucidated, the structure supports a model where IFT121/122 and IFT140/144 independently heterodimerize through antiparallel TPR interactions, before recruiting each other and IFT43/139. Contemporary work reporting the cryo-EM structure of a human IFT-A complex, reconstituted from recombinant proteins, also shows a bilobal architecture.58 However, the A1 and A2 subcomplexes are highly flexible relative to one another and are connected only through the IFT122TPR domain. No interaction between IFT43\b-prop1 and IFT121\b-prop1 was observed. This striking disparity in architecture and dynamics may reflect species-specific differences or a consequence of sample preparation methods (native versus recombinant). In negative-stain electron microscopy of L. tarentolae IFT-A purified without a crosslinker, we observed the “closed” state and also less populated “open” states (Figures S2A and S2B). A partially open state, in which the IFT140\b-prop1 and IFT121\b-prop1 are no longer in contact, was also observed as a minor class in our cryo-EM dataset of the crosslinked IFT-A sample (Figure S2C). From these data, we conclude that native IFT-A exists as an equilibrium between closed and open states. The ability of the IFT140\b-prop1 and IFT121\b-prop1 interface to open is consistent with our mechanism for oligomerization (Figure 3), in which this interface has to break to allow the IFT-A1 domain to swivel to contact its neighboring complex.

We show, using in vitro reconstitution with liposomes, that the fully assembled complex can bind membranes through its TPR domains with specificity for phosphatidic acid and ceramides. Ceramides were shown recently to promote ciliogenesis, regulate retrograde IFT, and pull down Chlamydomonas IFT subunits.55 The ability of IFT-A to bind membranes provides further evidence for a shared evolutionary relationship with coatomers. Although we saw no evidence for IFT-A forming cage-like structures on liposomes, further work will be needed to discover whether IFT-A can form ordered vesicle coats in cells.

Surprisingly, we discovered that IFT-A uses a common interface to engage both liposomes and IFT-B, with the N-terminal TPRs of IFT139 integral to both interactions. This contradicted our expectation that IFT-A would engage both membranes and IFT-B through opposing interfaces given that it is sandwiched between the two in anterograde trains. We hypothesize that our membrane-associated form, with lipid contacts mediated by TPR domains, corresponds to IFT-A on preciliary vesicles and/or retrograde trains (Figure 4E). If our preciliary vesicle hypothesis is correct, competition between binding membranes or IFT-B at the ciliary base might explain how IFT-A transitions from a vesicle- or membrane-bound state to one that engages IFT-B on assembling trains in the cytosol. This is not to say that IFT-A in anterograde trains cannot bind membranes. Membrane binding could still be achieved through a lower affinity interface or through adaptors such as TULP3, which associate with IFT-A during anterograde transport10,59,55 and have affinity for phosphoinositides.13

If our retrograde train hypothesis is correct, it would require IFT-A to invert during the conversion from anterograde to retrograde trains at the ciliary tip (Figure 4E). Rotation on a hinge provided by the flexible IFT139 subunit could allow inversion to occur without breaking contact with IFT-B, which is thought to be preserved during the transition.60 A consequence of the inversion model is that it would physically break interactions with anterograde cargoes, releasing them from futile recycling back to the cytosol. By exposing a different interface to the ciliary membrane, the inverted IFT-A could recognize a different set of cargoes from those delivered to the cilium. A role for IFT-A

(D) A 2D class average of a liposome-bound IFT-A (top) overlaid with the atomic model of IFT-A (bottom). Membrane contacts appear to involve the TPRs of IFT139 (yellow) and IFT122/140/144 (teal/pink/purple).

(E) A hypothetical model for how IFT-A might convert between different orientations depending on whether it is associated with vesicles or in anterograde or retrograde trains. In this model, IFT-A binds vesicle (v.m.) and ciliary membranes (c.m.) during retrograde transport through its TPR domains. These TPR domains are shielded from the membrane during anterograde transport by binding IFT-B.
in binding lipids specifically in retrograde trains may explain why ceramide biosynthesis inhibitors slow retrograde but not anterograde trains in *Chlamydomonas* flagella.\(^5^5\)

In situ structures of IFT-A-coated periciliary vesicles and retrograde IFT trains will be needed to test these hypotheses. How and when IFT-A converts between monomeric, polymeric, and membrane-bound forms has fundamental implications for the assembly and conversion of IFT trains and for the pickup and release of ciliary cargoes.

Implications for cargo binding

Our structures and structural analysis suggest that both the outer edges and upper surface of the \(\beta\)-propeller domains may be involved in cargo recognition during anterograde transport, and that the \(\beta\)-propeller domains of IFT140 and IFT144 in the IFT-A1 subcomplex may be particularly important. First, surface-exposed residues that are mutated in ciliopathies, and which may correspond to cargo binding sites, map to both the edges and upper surfaces of the \(\beta\)-propeller domains (Figure 5). Second, density in the subtomogram average of an anterograde IFT-A train that cannot be explained by our model (Figure 3A) is associated with the edges of the IFT140 \(\beta\)-propeller domains. This region includes G296, a residue mutated in short-rib thoracic dysplasia (Table S3). Although we cannot identify the origin of this additional density, it indicates that factors may be able to bind this interface. Finally, a role for IFT140 in cargo binding is consistent with biochemical evidence showing a direct association between IFT140 and the ciliary targeting sequence of the ciliary G-protein coupled receptor, somatostatin receptor 3 (SSTR3).\(^1^6\)

A recent study has mapped the TULP3 binding site on human IFT-A to an acidic patch on the outside of IFT122 ZnF domain.\(^5^8\) Using AlphaFold2 multimer, this region was predicted to bind the N-terminal helix of TULP3, which had previously been shown to be required for IFT-A binding.\(^1^3\) Mutation of five conserved IFT122 residues within this interface, including charge reversal of three acidic residues, abolished TULP3 binding without disrupting the incorporation of IFT122 into IFT-A.\(^5^8\) Binding to the IFT122 ZnF domain would place the phosphoinositide-binding TUBBY domain of TULP3\(^1^3\) in the vicinity of the A1 subcomplex.

Figure 5. Location of disease-causing missense variants

(A) Human disease-causing missense variants (Table S3) mapped onto a model of human IFT-A, colored by subunit. Spheres mark the Cs atom of the mutated residue.

(B) A list of surface-exposed residues mutated in human disease.

(C) The atomic model and surface-facing mutation sites listed in (B) colored by conservation. Conservation scores were calculated using ConSurf.\(^5^7\) The side facing right abuts the ciliary membrane (c.m.) in anterograde trains, whereas the surface facing left engages IFT-B and preferentially binds lipids.
β-propeller domains on the end of a flexible tether. Our structure of the *L. tarentolae* IFT-A demonstrates that the putative binding site for the TULP3 N-terminal helix is conserved, including the acidic residues that are proposed to interact electrostatically with the basic residues of the helix. However, the *L. tarentolae* genome does not encode an obvious homolog of TULP3, and no TUBBY domain-containing proteins copurified with IFT-A. Whether *L. tarentolae* has an adaptor equivalent of TULP3 awaits investigation.

Limitations of the study

Here, we have shown that IFT-A displays lipid specificity and can partially coat liposomes *in vitro*, consistent with the *in vivo* visualization of IFT121-dependent densely coated periciliary vesicles in mammalian cells. However, further work will be needed to demonstrate exactly how IFT-A binds native vesicles and whether it co-migrates with IFT-B during vesicular trafficking. Are they delivered to the ciliary base separately or as a preformed complex? How IFT-A transitions from its vesicle-bound form to the IFT train also needs further clarification. Does uncoating require membrane fusion, or is uncoating a prerequisite for membrane fusion? To aid these studies, our high-resolution structures will provide templates to identify IFT-A at different stages of trafficking in electron micrographs and tomograms.

While we show that lateral polymerization of IFT-A into IFT trains requires large subcomplex rearrangements, whether IFT-B polymerization follows similar principles will require structures of IFT-B before train formation. The ability to determine structures of native IFT complexes provides a viable avenue to achieve this aim. Similarly, although our structures reveal potential cargo-binding sites, the molecular basis for substrate recognition will require structures of co-complexes with membrane-protein cargoes and their adaptors.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
- **METHOD DETAILS**
 - Sample preparation for thin-section transmission electron microscopy
 - Construct design
 - Transfection
 - IFT-A purification (with crosslinker)
 - IFT-A purification (without detergent or crosslinker)
 - Mass spectrometry
 - Lipid-binding assays
 - Liposome-binding assay
 - Negative-stain electron microscopy
 - Cryo-grid preparation
 - Cryo-EM data collection
 - Cryo-EM data processing
 - Model building and refinement
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.2022.11.033.

ACKNOWLEDGMENTS

We thank S. Sterling, R. Walsh, and M. Mayer for assistance with electron microscopy at the Harvard Cryo-EM Center for Structural Biology. We thank R. Tomarino for mass spectrometry analysis, P. Aschauer for advice on preparing liposomes, J.R. Anderson for testing postprocessing strategies, P. Czarnecki for discussions, and SBGrid for computing support. M.G. was supported by a Charles A. King Trust Postdoctoral Research Fellowship. A.B. is supported by NIGMS (GM141109 and GM143183), the Smith Family Foundation, and the Pew Charitable Trusts.

AUTHOR CONTRIBUTIONS

S.M. cultured *Leishmania tarentolae*, generated constructs, purified IFT-A, and performed lipid-binding assays and negative-stain electron microscopy. H.Z. screened cryo-grids and collected and processed cryo-EM data. J.D. cultured *L. tarentolae*. M.G. screened cryo-grids. A.B. supervised the project and wrote the paper with contributions from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 14, 2022
Revised: November 14, 2022
Accepted: November 28, 2022
Published: December 22, 2022

REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat anti-FLAG antibody</td>
<td>BioLegend</td>
<td>Cat #637301; RRID:AB_1134266</td>
</tr>
<tr>
<td>Horseradish peroxidase-conjugated anti-rat secondary antibody</td>
<td>Cell Signaling Technology</td>
<td>Cat #7077S; RRID:AB_10694715</td>
</tr>
<tr>
<td>Chemicals, peptides, and recombinant proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-dipalmitoyl-sn-glycero-3-phosphate (PA)</td>
<td>Avanti Polar Lipids</td>
<td>Cat #830855P</td>
</tr>
<tr>
<td>1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)</td>
<td>Avanti Polar Lipids</td>
<td>Cat #850757</td>
</tr>
<tr>
<td>1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (POPG)</td>
<td>Avanti Polar Lipids</td>
<td>Cat #840457</td>
</tr>
<tr>
<td>3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP)</td>
<td>Thermo Fisher Scientific</td>
<td>Cat #21578</td>
</tr>
<tr>
<td>3X FLAG peptide</td>
<td>Pepmic</td>
<td>Custom synthesis, no identifier</td>
</tr>
<tr>
<td>Anti-FLAG M2 resin</td>
<td>Sigma-Aldrich</td>
<td>Cat #A2220</td>
</tr>
<tr>
<td>BH medium</td>
<td>HIMEDIA</td>
<td>Cat #N210</td>
</tr>
<tr>
<td>Hemin chloride</td>
<td>Sigma</td>
<td>Cat #3741</td>
</tr>
<tr>
<td>Penicillin-Streptomycin</td>
<td>Gibco</td>
<td>Cat #15070063</td>
</tr>
<tr>
<td>Poly-L-lysine</td>
<td>Sigma-Aldrich</td>
<td>Cat #P8920</td>
</tr>
<tr>
<td>Phusion High-Fidelity DNA polymerase</td>
<td>Thermo Fisher Scientific</td>
<td>Cat #F-530S</td>
</tr>
<tr>
<td>Polycarbonate membrane</td>
<td>Avanti Polar Lipids</td>
<td>Cat #610005</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Promega</td>
<td>Cat #90057</td>
</tr>
<tr>
<td>Critical commercial assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novex ECL chemiluminescence kit</td>
<td>Thermo Fisher Scientific</td>
<td>Cat #WP20005</td>
</tr>
<tr>
<td>Membrane lipid strips</td>
<td>Echelon Bioscience</td>
<td>Cat #P-6002</td>
</tr>
<tr>
<td>Deposited data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtomogram average of C. reinhardtii IFT-A obtained from anterograde trains</td>
<td>McCafferty et al., 2022</td>
<td>EMDB: EMD-26791</td>
</tr>
<tr>
<td>Subtomogram average of C. reinhardtii IFT-A obtained from anterograde trains</td>
<td>Jordan et al., 2018</td>
<td>EMDB: EMD-4304</td>
</tr>
<tr>
<td>Composite subtomogram average of an assembled C. reinhardtii IFT train at the ciliary transition zone</td>
<td>van den Hoek et al., 2022</td>
<td>EMDB: EMD-15261</td>
</tr>
<tr>
<td>Composite cryo-EM map of Leishmania tarentolae IFT-A state 1</td>
<td>This paper</td>
<td>EMDB: EMD-28866</td>
</tr>
<tr>
<td>Composite cryo-EM map of Leishmania tarentolae IFT-A state 2</td>
<td>This paper</td>
<td>EMDB: EMD-28867</td>
</tr>
<tr>
<td>Atomic model of Leishmania tarentolae IFT-A state 1</td>
<td>This paper</td>
<td>PDB: PDB 8F5O</td>
</tr>
<tr>
<td>Atomic model of Leishmania tarentolae IFT-A state 2</td>
<td>This paper</td>
<td>PDB: PDB 8F5P</td>
</tr>
<tr>
<td>Chemical crosslinking mass spectrometry data obtained for Tetrahymena thermophila IFT-A</td>
<td>McCafferty et al., 2022</td>
<td>MassIVE/ProteomeXchange: PXD032818</td>
</tr>
<tr>
<td>Experimental models: organisms/strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leishmania tarentolae strain P10</td>
<td>Jena Bioscience</td>
<td>Cat #LT-101</td>
</tr>
<tr>
<td>Bacteria: Escherichia coli DH5α</td>
<td>New England Biolabs</td>
<td>Cat #C2987H</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LtIFT43_Fw1</td>
<td>Sigma</td>
<td>N/A</td>
</tr>
<tr>
<td>CCGTGGCCACGACTCTGCTCATGACGCGCTGATTA</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>LtIFT43_Rv1</td>
<td>Sigma</td>
<td>N/A</td>
</tr>
<tr>
<td>CCGGAGGATGACGATGCGAAATGCTGGATG</td>
<td>(Continued on next page)</td>
<td></td>
</tr>
</tbody>
</table>
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alan Brown (alan_brown@hms.harvard.edu).

Materials availability
A pLEXSY-hyg2.1 plasmid expressing Flag-tagged IFT43 has been deposited with Addgene (https://www.addgene.org/) with ID #194433.

Data and code availability
- Composite cryo-EM maps of *L. tarentolae* IFT-A state 1 and 2 have been deposited in the Electron Microscopy DataBank (EMDB) with accession numbers EMD-28866 and EMD-28867. Half maps and masks are deposited as additional maps associated with these entries. Atomic models of IFT-A state 1 and state 2 have been deposited in the PDB with accession numbers 8F5O and 8F5P.
- This paper does not report original code.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Leishmania tarentolae strain P10 (Jena Bioscience, #LT-101) cells were grown in BHI medium (HIMEDIA, #N210) containing 5 μg/mL hemin chloride (Sigma, #3741) and 10 U/mL Penicillin-Streptomycin (Gibco, #15070063) at 26°C in the dark. Cells were maintained as static suspension cultures as described in the LEXSY expression kit manual (Jena Bioscience).
Sample preparation for thin-section transmission electron microscopy

Cells in late logarithmic phase were diluted 1:10 and left overnight. The next day, the cells were fixed by a 5-min incubation with microscopy-grade glutaraldehyde at a final concentration of 2.5%. The cells were collected by centrifugation at 800 x g for 5 min. The pellet was resuspended in 1.5 mL fresh BHI medium without hemin and antibiotics. To this, an equal volume of fixation reagent containing 2% formaldehyde, 2.5% glutaraldehyde and 0.3% picric acid in 0.1 M sodium cacodylate buffer (pH 7.4) was added and left for 1 h on a rocking platform. 200 µL of cell suspension (containing ~20–50 million cells) was then loaded onto 12 mm Aclar coverslips (Electron Microscopy Sciences, #50425-25) precoated with poly-L-lysine (Sigma-Aldrich; #P8920) and allowed to settle for 30 min. Excess liquid was aspirated, and the coverslip was spun at 4680 x g on a plate spinner for 3 min. The coverslip was then washed three times with 0.1 M sodium cacodylate buffer followed by fixation with 1% osmium tetroxide. After rinsing with 50 mM maleate buffer (pH 5.2), the sample was further incubated with 1% aqueous uranyl acetate for 1 h at room temperature. The fixed sample was dehydrated by washing with escalating ethanol concentrations (70, 90 and 100%). Following dehydration, the sample was treated with propyleneoxide for 1 h, infiltrated with epoxy resin and finally embedded in freshly mixed Epon. 50 nm sections were collected from the Epon blocks and mounted on the specimen grid. For contrast, the grid was stained with lead citrate and uranyl acetate. The images were collected on a 120 kV Tecnai T12 microscope (Thermo Fisher Scientific).

Construct design

To constitutively express IFT43-FLAG in L. tarentolae from a genome-integrated position, we modified expression vector pLEXSY-hyg2.1 (Jena Bioscience, #EGE-1310hyg) to insert a linker, 3X FLAG peptide sequence, and an XbaI restriction site into the KpnI site of the vector. The L. tarentolae gene encoding IFT43 was amplified from genomic DNA using primer oligonucleotides (Key resources table) and Phusion High-Fidelity DNA polymerase (Thermo Fisher Scientific, #F-530S). The amplified gene was inserted into the modified pLEXSY-hyg2.1 vector between the 5’ BglII or NcoI and 3’ XbaI sites. The ligated vector was transformed into Escherichia coli DH5α cells and plated onto agar plates containing ampicillin. Bacterial colonies were screened by colony PCR using the gene-specific primers (Key resources table). The plasmids were purified and sequence verified before transfection.

Transfection

For transfection, L. tarentolae cell density was adjusted to 10^8 cells/mL, followed by incubation on ice for 10 min. 380 µL of this culture was mixed with 2 µg of linearized (Sclal digested and gel purified) plasmid. This mixture was immediately transferred to a pre-cooled electroporation cuvette (d = 2 mm) and electroporated using a Gene Pulser Xcell Eukaryotic System (Bio-Rad) using time constant protocol at 450 V for 3.5 ms. The cuvette was then put back on ice for 10 min. The cells were allowed to recover overnight in fresh BHI-hemin medium as a static suspension culture. The cells were harvested by centrifugation at 2,000 x g for 3 min, resuspended in 200 µL and plated onto BHI agar containing 100 µg/mL hygromycin. The plate was incubated for 4–5 days until colonies were visible. Individual colonies were transferred to 150 µL BHI-hemin medium in a 96-well plate. For protein production, the cells were grown at scale as agitated suspension cultures.

IFT-A purification (with crosslinker)

L. tarentolae cells from 32 L culture volumes were harvested by centrifugation at 5,422 x g for 10 min. The cell pellets were resuspended in ~450 mL ice-cold lysis buffer (35 mM HEPES pH 7.4, 100 mM KCl, 5 mM MgSO4, 1 mM CaCl2, 1 mM DTT, Protease inhibitor cocktail, 20 mM NaF, 50 mM β-glycerophosphate, 1% Triton X-100, and DNase) and incubated at 4°C for 15 min with continuous stirring. The lysate was centrifuged at 42,510 x g for 30 min. The clarified lysate was applied to 4 mL anti-FLAG M2 resin (Sigma-Aldrich, #A2220) preequilibrated with wash buffer (35 mM HEPES pH 7.4, 100 mM KCl, 5 mM MgSO4, 1 mM CaCl2, 1 mM DTT). The column was washed with 200 mL wash buffer and eluted with wash buffer containing 100 µg/mL 3X FLAG peptide (Pepmic). The eluate was concentrated using a 15 µL concentrator with a 100 kDa cutoff Amicon Ultra filter (Millipore) to less than 1 mL and loaded onto a 13 mL 10–40% continuous sucrose gradient prepared in wash buffer with a gradient maker (Gradient Master, BioComp). Crosslinking reagent 3,3’-dithiobis(sulfosuccinimidyl propionate) (DTSSP; Thermo Fisher Scientific, #21578) was added to the 40% sucrose solution to a final concentration of 1 mM prior to making the gradient. The sample was centrifuged at 200,000 x g for 16 h using a SW40Ti rotor in an Optima LE-80K ultracentrifuge (Beckman Coulter) at 4°C. The gradient was fractionated into 600 µL aliquots with the crosslinking reaction quenched by adding 40 mM Tris pH 7.4. The fractions containing the complex were pooled and concentrated with a 4 mL Amicon Ultra concentrator with a 100 kDa cutoff (Millipore). The sample was loaded onto a Mono Q 5/50 GL column (Cytiva, #17516601) preequilibrated with buffer A (20 mM HEPES pH 7.4, 5 mM MgSO4, 1 mM CaCl2, 50 mM KCl, and 1 mM DTT) and eluted using a gradient up to buffer B (20 mM HEPES pH 7.4, 5 mM MgSO4, 1 mM CaCl2, 1 M KCl, and 1 mM DTT). Peak fractions were analyzed by SDS-PAGE, mass spectrometry, and negative-stain electron microscopy.

IFT-A purification (without detergent or crosslinker)

Cell pellets were resuspended in ~300 mL ice-cold lysis buffer without detergent (35 mM HEPES pH 7.4, 100 mM KCl, 5 mM MgSO4, 1 mM CaCl2, 1 mM DTT, Protease inhibitor cocktail, 20 mM NaF, 50 mM β-glycerophosphate, 8% sucrose, and DNAse). The cells were lysed with a high-pressure homogenizer, EmulsiFlex-C3 (Avestin), with an applied pressure of 50–60 psi. The lysate was
Membrane 23, 74 1, 2-dipalmitoyl-Liposomes were generated using a lipid composition (11.4% PA, 63.2% POPE, 25.4% POPG) that replicates the Liposome-binding assay ECL chemiluminescence kit (Thermo Fisher Scientific, #WP20005). The strip was washed three times with TBST and once with TBS (10 mL per wash, each for 10 min). Signal was detected using the Novex peroxidase-conjugated anti-rat secondary antibody (Cell Signaling Technology, #7077S) for 1 h at room temperature. Finally, the amine (16:0-18:1 POPE, #850757) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (16:1-18:1 POPG, #840457) and loaded onto a preequilibrated reverse-phase capillary column (100 mm inner diameter, and ~30 cm length) containing 2.6 mm C18 spherical silica beads using a Famos auto sampler (LC Packings). A gradient was formed, and peptides were eluted with increasing concentrations of solvent B (97.5% acetonitrile, 0.1% formic acid). As peptides eluted, they were subjected to electrospray ionization and entered into an LTQ Orbitrap Velos Pro ion-trap mass spectrometer (Thermo Fisher Scientific). Peptides were detected, isolated, and fragmented to produce a tandem mass spectrum of fragment ions for each peptide. Protein identity was determined using Sequest (Thermo Fisher Scientific). The data were filtered to between a one and two percent peptide false discovery rate.

Lipid-binding assays
Membrane lipid strips (Echelon Bioscience, #P-6002) were incubated with 5 mL Tris-buffered saline (TBS) containing 3% BSA overnight on an orbital shaker at 4°C. The next day, the buffer was renewed, and the strip incubated for another hour. The strip was then incubated with a 5 mL solution of ~0.05 mg/mL IFT-A in buffer containing 20 mM HEPES pH 7.4, 5 mM MgSO₄, 1 mM CaCl₂, 50 mM KCl, and 1 mM DTT at room temperature with constant shaking. After 2 h, the protein solution was discarded, and the strip washed twice (5 min per wash) with a total of 10 mL blocking buffer (TBS with 0.001% tween 20 (TBST) and 5% milk). The strip was then incubated with 5 mL blocking buffer containing a 1:500 dilution of anti-FLAG antibody (BioLegend, #637301) overnight with constant shaking. After 2 h, the solution was reconstituted in 20 mM HEPES pH 7.4, 100 mM KCl, and 1 mM DTT with 3% BSA. The next day, the buffer was renewed, and the strip incubated for another hour. The strip was then washed three times with 10 mL TBST for a total of 30 min before incubating with a horseradish peroxidase-conjugated anti-rat secondary antibody (Cell Signaling Technology, #7077S) for 1 h at room temperature. Finally, the strip was washed three times with TBST and once with TBS (10 mL per wash, each for 10 min). Signal was detected using the Novex ECL chemiluminescence kit (Thermo Fisher Scientific, #WP20005).

Liposome-binding assay
Liposomes were generated using a lipid composition (11.4% PA, 63.2% POPE, 25.4% POPG) that replicates the C. reinhardtii ciliary membrane. 1, 2-dipalmitoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (16:0-18:1 POPE, #850757) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (16:1-18:1 POPG, #840457) were purchased from Avanti Polar Lipids. Liposomes were prepared using thin-film hydration followed by extrusion. Briefly, lipid stock solutions in chloroform were mixed to get 100 nM total lipid in the desired composition in a glass tube. The mixture was dried using N₂ gas to form a thin layer followed by drying overnight in a vacuum desiccator. The dried film was hydrated with 1 mL buffer containing 30 mM HEPES pH 7.4 and 100 mM KCl. The buffer was first warmed to the phase transition temperature of PA (65°C) to help liposome formation. The solution was sonicated in a water bath sonicator for 5 min. The lipidosome solution was then extruded for ~100 times through a 100 nM polycarbonate membrane (Avanti Polar Lipids, #610005). Liposomes containing PA (63.2%) and POPG (36.8%) were prepared using same method. Purified IFT-A was mixed with liposomes in molar ratios of 10:1, 20:1, 40:1 and 60:1 and incubated 30 on ice and analyzed by negative stain electron microscopy.

Mass spectrometry
Mass spectrometry was performed at the Taplin Mass Spectrometry Facility at Harvard Medical School. In brief, the IFT-A samples were provided to the facility as dehydrated SDS-PAGE gel pieces. The gel pieces were rehydrated with 50 mM ammonium bicarbonate solution containing 12.5 ng/mL trypsin (Promega, Cat. #90057). After 45 min at 4°C, the trypsin solution was replaced with 50 mM ammonium bicarbonate solution and left at 37°C overnight. Peptides were extracted by removing the ammonium bicarbonate solution, followed by a wash with a solution containing 50% acetonitrile and 1% formic acid. The extracts were then dried using a vacuum concentrator for 1 h and stored at 4°C. The next day, the trypsin solution was replaced with 50 mM ammonium bicarbonate solution and left at 37°C overnight. Peptides were extracted by removing the ammonium bicarbonate solution, followed by a wash with a solution containing 50% acetonitrile and 1% formic acid. The extracts were then dried using a vacuum concentrator for 1 h and stored at 4°C. For mass spectrometry, the samples were reconstituted in 5–10 mL of solvent A (2.5% acetonitrile, 0.1% formic acid) and loaded onto a preequilibrated reverse-phase capillary column (100 mm inner diameter, and 30 cm length) containing 2.6 mm C18 spherical silica beads using a Famos auto sampler (LC Packings). A gradient was formed, and peptides were eluted with increasing concentrations of solvent B (97.5% acetonitrile, 0.1% formic acid). As peptides eluted, they were subjected to electrospray ionization and entered into an LTQ Orbitrap Velos Pro ion-trap mass spectrometer (Thermo Fisher Scientific). Peptides were detected, isolated, and fragmented to produce a tandem mass spectrum of fragment ions for each peptide. Protein identity was determined using Sequest (Thermo Fisher Scientific). The data were filtered to between a one and two percent peptide false discovery rate.

Negative-stain electron microscopy
Carbon-coated copper grids (Electron Microscopy Sciences, #CF200-Cu) were glow discharged at 30 mA for 30 s. A 4 μl aliquot of IFT-A sample (0.02 mg/mL) was applied to the grid. After incubating for 1 min, the grid was washed twice with 10 mM HEPES pH 7.4 and twice with 1.5% Uranyl formate followed by staining with 1.5% Uranyl formate for 2 min. The grids were imaged using either a 100 kV CM10 (Philips) or a 120 kV Tecnai T12 (Thermo Fisher Scientific) microscope. Images were recorded using an Ultrascan 895 CCD camera (Gatan).

Cryo-grid preparation
Cryo-EM grids of IFT-A were prepared using a Vitrobot Mark IV (Thermo Fisher Scientific). 3 μl aliquots of purified complex at concentrations of 1.1 mg/mL were applied onto glow-discharged 2-nm thick carbon coated QUANTIFOIL grids (R2/1, 200 mesh gold, Electron Microscopy Sciences, #220210). The grids were blotted for 5.5 s with a blot force of 12 and 100% humidity before being plunged into liquid ethane cooled by liquid nitrogen.
Cryo-EM data collection
Images were acquired on a Titan Krios microscope equipped with a BioQuantum K3 Imaging Filter (slit width 20 eV) and a K3 direct electron detector (Gatan) and operating at an acceleration voltage of 300 kV. Images were recorded at a defocus range of −1.5 μm to −2.5 μm with a nominal magnification of 105,000 x, resulting in a pixel size of 0.83 Å. Each image was dose-fractionated into 50 movie frames with a total exposure time of 2.963 s, resulting in a total dose of ~57.8 electrons per Å². SerialEM v.3.8.5 was used for data collection.73

Cryo-EM data processing
Software used for cryo-EM data processing and model building were installed and managed by SBGrid.72 Data were processed using cryoSPARC v3.3.266 and RELION 4.0.71 Individual movies were motion corrected in RELION before being exported to cryoSPARC for Patch-based CTF estimation. Curate Exposures was used to select 25,415 good micrographs. Next, we used a template-free blob picker to pick particles on a subset of 5,492 micrographs from which we generated 14 distinct two-dimensional classes with well-resolved features. Using these 2D classes as templates for picking, we obtained 1,203,589 “large” and 696,079 “small” particles from the full dataset. Large particles corresponded to the intact IFT-A complex, whereas the small particles corresponded to individual IFT-A subcomplexes. After alignment in cryoSPARC, the large and small particles were transferred to RELION 4.0 for further processing. The large particles were classified with or without alignment into 4 to 6 classes. The classes were then combined into two states that differ in the position of IFT139. State 1 particles (239,280 in total) were reextracted without binning, polished and refined to a final resolution of 4.0 Å. Next, we performed signal subtraction for the A1 and A2 subcomplexes followed by 3D classification. Mask-focused refinement was performed on five local regions (shown in Figure S1E) to obtain higher-resolution maps. Unbinned state 2 particles (563,466 in total) were polished and refined to a final resolution of 3.6 Å. To improve local resolution, mask-focused refinement was performed on the A2 subcomplex. In addition, mask-focused classification and refinement was performed on the A1 subcomplex and IFT139 to improve the resolution of these dynamic regions.

Mask-focused refinement maps were sharpened by RELION postprocessing and merged into a composite map using PHENIX combine focused maps68 with default settings. These composite maps were used for model building, refinement, and analysis. Maps sharpened using DeepEMhancer67 were used to make figures in ChimeraX v1.4.63

Model building and refinement
Atomic models of the *L. tarentolae* IFT-A subunits were predicted using AlphaFold262 and docked into the cryo-EM maps using Coot v.0.9.8.365. The models were then adjusted in Coot to better fit the maps using real-space refinement. Zinc ions were added to the zinc-finger domains. The final model was refined in real space using Phenix69 with Ramachandran and secondary structure restraints applied. Model statistics were calculated with MolProbity69 implemented within Phenix. In general, only protein regions with resolved sidechains or secondary structure are included in the final, deposited models. Flexible loops and domains have been removed including the C-terminal zinc finger domain of IFT144 and the N-terminal TPRs of IFT139. More of the IFT139 N-terminus could be modeled in state 1 than state 2. An exception was made for IFT144b-prop1, which has relatively weak density due to flexibility but was left in the model.

Atomic models of IFT-A from *T. thermophila* (used for validation against crosslinking data; Figure S4), *Chlamydomonas reinhardtii* (used for modeling IFT-A in anterograde trains; Figure 3) and *Homo sapiens* (used for interpreting human mutation data; Figures 2F and 5) were built by superposing sections of AlphaFold2 models onto the atomic model of *L. tarentolae* IFT-A. Sequence alignments were performed with Clustal Omega v1.2.2.64

The atomic model of IFT-A polymerized on IFT trains was generated by docking the homology model of the *C. reinhardtii* IFT-A into the subtomogram average of IFT-A obtained from anterograde trains (EMDB: EMD-26791).60 Docking revealed that the segmented density did not correspond with the monomeric unit of IFT-A. We therefore used a lower resolution subtomogram average that contains approximately 3 copies of IFT-A (EMDB: EMD-4304)18 to proliferate EMD-26791 into a linear array. Docking was guided by the A2 subcomplex, where the shape and curvature allowed unambiguous positioning. The A1 domain was then rotated into position as a rigid body. The IFT140TPR and IFT144TPR domains were then manually adjusted in Coot to fit the density. To resolve the position of IFT-A relative to IFT-B, the atomic model was docked into the composite subtomogram average of an assembled *C. reinhardtii* IFT train at the ciliary transition zone (EMDB: EMD-15261).18

QUANTIFICATION AND STATISTICAL ANALYSIS
Estimations of the resolution of the cryo-EM density maps (reported in Figures S1 and S3) are based on the 0.143 FSC criterion.75 All statistical validation performed on the deposited models (PDB: 8F5O and PDB: 8F5P) were done using the PHENIX package69 (Table S2).
Figure S1. Purification and structure determination of *Leishmania tarentolae* IFT-A, related to Figure 1

(A) Left, thin-section transmission electron micrograph showing an *L. tarentolae* flagellum with an IFT train (marked with an arrowhead) between the axonemal doublet microtubules (DMT) and the ciliary membrane (c.m.). Also indicated is the central apparatus (CA) in the middle of the axoneme. Middle and right, electron micrographs showing the cross-sections of *Leishmania* flagella with putative IFT trains labeled with arrowheads.

(B) Chromatogram showing the IFT-A peak following ion-exchange chromatography.

(C) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of purified IFT-A.

(D) Representative electron micrograph of IFT-A taken under cryogenic conditions.

(E) Flow diagram, starting with selected two-dimensional class averages, of the steps taken to obtain structures of IFT-A complexes and the IFT-A2 subcomplex.
Figure S2. Two-dimensional (2D) class averages of *Leishmania tarentolae* IFT-A, related to Figure 1

(A) Comparison of 2D class averages from negative-stain electron microscopy of IFT-A purified with (+) and without (Δ) crosslinker. In both instances, the class shown is the most abundant class observed.

(B) Selected 2D classes of IFT-A purified without crosslinker showing a progressive opening of a gap between the A1 and A2 subdomains.

(C) 2D class averages from cryo-EM data showing that subcomplex movement is observed even with crosslinked IFT-A. This movement breaks the interaction between the N-terminal β-propeller domains of IFT121 and IFT140.
Figure S3. Resolution and map quality, related to Figure 1
(A) Fourier shell correlation (FSC) curves for IFT-A state 1 (left), IFT-A state 2 (middle), and IFT-A2 (right). The corresponding maps are shown in Figure S1 together with their resolution determined using the FSC = 0.143 criterion. Map 1 corresponds to the consensus refinement before mask-focused classification/refinement.

(B) Consensus maps colored by local resolution. Local map quality was improved further by mask-focused refinement.

(C) Examples of map density for each of the six IFT-A subunits with landmark residues labeled. Maps were sharpened using DeepEMhancer for visualization purposes only.
Figure S4. IFT-A structure validation using chemical crosslinking mass spectrometry, related to Figure 1

(A) Atomic model of *Tetrahymena thermophila* IFT-A, built using the model of *Leishmania tarentolae* IFT-A as a template. The Cα atoms of residues crosslinked by disuccinimidyl sulf oxide are connected with a line. Green lines indicate crosslinks within a subunit, and purple lines indicate crosslinks between two different subunits. Orange spheres represent residues that form crosslinks that exceed the distance (>45 Å) capable of being crosslinked by disuccinimidyl sulf oxide.

(B) Plot of distances between Cα positions of crosslinked residues. Data were plotted using GraphPad Prism v9 (GraphPad Software).
Figure S5. IFT121, IFT122, and IFT144 have conserved C-terminal zinc-finger (ZnF) domains, related to Figure 2

(A) The C terminus of *Leishmania tarentolae* (Lt) IFT121 superposed with the AlphaFold2 model of human (Hs) IFT121. In humans, the first ZnF domain (ZnF1) is absent but the second (ZnF2) is highly conserved. The Zn ion is shown as a green sphere and the coordinating cysteine residues are shown in stick representation.

(B) Superposition of the C-terminal domains of Lt and Hs IFT122, each featuring two conserved ZnFs and a small mixed α/β domain.

(C) Superposition of the C termini of Lt and Hs IFT144 featuring tandem ZnF domains.

(D) Sequence alignment of the regions shown in (A)–(C). Conserved residues are marked with an asterisk. Conserved cysteines are further highlighted in yellow.

Sequences were obtained from *Leishmania tarentolae* (Lt), *Trypanosoma brucei* (Tb), *Chlamydomonas reinhardtii* (Cr), *Tetrahymena thermophila* (Tt), *Caenorhabditis elegans* (Ce.), and *Homo sapiens* (Hs.). Accession numbers for the sequences are provided in Table S4.
Figure S6. IFT-A specifically decorates liposomes containing phosphatidic acid (PA), related to Figure 4

(A) Representative negative-stain electron micrograph showing IFT-A particles bound to the surface of liposomes generated with PA.
(B) Representative negative-stain electron micrograph of IFT-A incubated with liposomes lacking PA. Most IFT-A particles and liposomes remain separate.