High Fidelity Polymerase
Thermostable DNA polymerase for high accuracy
Thermus species, recombinant, E. coli

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-204S</td>
<td>100 units</td>
</tr>
<tr>
<td>PCR-204L</td>
<td>500 units</td>
</tr>
</tbody>
</table>

Unit Definition: One unit is defined as the amount of the enzyme required to catalyze the incorporation of 10 nmol of dNTP into an acid-insoluble form in 30 minutes at 74 °C.

For in vitro use only!

Shipping: shipped on blue ice
Storage Conditions: store at -20 °C
Additional Storage Conditions: avoid freeze/thaw cycles
Shelf Life: 12 months
Form: liquid
Concentration: 2.5 units/µl

Description:
High Fidelity Pol is based on a blend of Taq DNA polymerase and a proofreading enzyme specially designed for highly accurate and efficient amplification. It shows excellent results with extremely long (up to 30 kb), GC-rich or other difficult templates. The enzyme blend includes a highly processive 5’→3’ DNA polymerase and possesses a 5’→3’ polymerization-dependent exonuclease replacement activity. Its inherent 3’→5’ exonuclease proofreading activity results in a greatly increased fidelity of DNA synthesis compared to Taq polymerase.
The enzyme is highly purified and free of bacterial DNA.

Fidelity of the enzyme:
High Fidelity Pol is characterized by a 4-fold higher fidelity compared to Taq polymerase.

\[\text{ER}_{\text{High Fidelity Pol}} = 3.4 \times 10^{-6} \]

The error rate (ER) of a PCR reaction is calculated using the equation

\[\text{ER} = \frac{\text{MF}}{(\text{bp} \times d)} \]

where MF is the mutation frequency, bp is the number of base pairs of the fragment and d is the number of doublings (2^d = amount of product / amount of template).

Content:
High Fidelity Pol (red cap)
2.5 units/µl High Fidelity Polymerase in storage buffer

High Fidelity Buffer (green cap)
10x conc.

Recommended 50 µl PCR assay:

<table>
<thead>
<tr>
<th>5 µl</th>
<th>10x High Fidelity Buffer</th>
<th>green cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 µM</td>
<td>each dNTP</td>
<td>-</td>
</tr>
<tr>
<td>0.2 - 0.5 µM</td>
<td>each Primer</td>
<td>-</td>
</tr>
<tr>
<td>1 - 100 ng</td>
<td>template DNA</td>
<td>-</td>
</tr>
<tr>
<td>0.5 µl (1.25 units)</td>
<td>High Fidelity Pol</td>
<td>red cap</td>
</tr>
<tr>
<td>Fill up to 50 µl</td>
<td>PCR-grade water</td>
<td>-</td>
</tr>
</tbody>
</table>

Please note that it is essential to add the polymerase as last component.

Recommended cycling conditions:

<table>
<thead>
<tr>
<th>initial denaturation</th>
<th>95 °C</th>
<th>2 min</th>
<th>1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>denaturation</td>
<td>95 °C</td>
<td>20 sec</td>
<td>20-30x</td>
</tr>
<tr>
<td>annealing(^1)</td>
<td>50 - 68 °C</td>
<td>30 sec</td>
<td>20-30x</td>
</tr>
<tr>
<td>elongation(^1)</td>
<td>68 °C</td>
<td>1 min/kb</td>
<td>20-30x</td>
</tr>
<tr>
<td>final elongation</td>
<td>68 °C</td>
<td>1 min/kb</td>
<td>1x</td>
</tr>
</tbody>
</table>

\(^1\)The annealing temperature depends on the melting temperature of the primers.
High Fidelity Polymerase
Thermostable DNA polymerase for high accuracy
Thermus species, recombinant, E. coli

The primers used.

The elongation time depends on the length of the fragments to be amplified. A time of 1 min/kb is recommended.

For optimal specificity and amplification an individual optimization of the recommended parameters may be necessary for each new template DNA and/or primer pair.

Related Products:
- Ready-to-Use Mixes / direct gel loading
- Ready-to-Use Mixes
- Thermophilic Polymerases
- Deoxynucleotides (dNTPs)
- Supplements
- Primers and Oligonucleotides
- DNA Ladders