NPE-caged-ATP
Adenosine-5'-triphosphate, P3-(1-(2-nitrophenyl)-ethyl)-ester, Sodium salt

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU-301S</td>
<td>150 µl (10 mM)</td>
</tr>
<tr>
<td>NU-301L</td>
<td>5 x 150 µl (10 mM)</td>
</tr>
</tbody>
</table>

Structural formula of NPE-caged-ATP

For research use only!

Applications:
- Determination of quantum yield and irradiation conditions\[^{[1, 2, 3]}\]
- Time resolved solid state NMR\[^{[4]}\]
- Ligand for purinergic receptors:
 - The nucleotide can be transported extra- or intracellular in a protected form to the target. After activation by well-defined conditions the liberated ATP can interact with P2X- and P2Y-receptors. Interacting subreceptor types and corresponding references are listed in Data sheet #NU-1010.
 - Agonistic ligand, mainly for nucleoside receptor A1
 - Nucleoside-triphosphates can be converted by different membrane-bound phosphatases into nucleosides acting as nucleoside receptor ligands. The caged form is protected during uptake and transport in animal experiments and can be well-directed released through activation at the target tissue.

Selected References:
- Broustovetsky et al. (1997) Biochemical and physical parameters of the electrical currents measured with the ADP/ATP carrier by photolysis of caged ADP and ATP. Biochemistry 36:13865.

