


5-Azido-C₃-UTP

5-(3-Azidopropyl)-uridine-5'-triphosphate, Triethylammonium salt

Cat. No.	Amount
NU-157S	20 μl (10 mM)
NU-157L	5 x 20 μl (10 mM)

Structural formula of 5-Azido-C₃-UTP

For general laboratory use.

Shipping: shipped on gel packs

Storage Conditions: store at -20 °C

Additional Storage Conditions: avoid freeze/thaw cycles

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 12 months after date of delivery

Molecular Formula: C12H20N5O15P3 (free acid)

Molecular Weight: 567.23 g/mol (free acid)

Exact Mass: 567.02 g/mol (free acid)

Purity: ≥ 95 % (HPLC)

Form: solution in water

Color: colorless to slightly yellow

Concentration: 10 mM - 11 mM

pH: 7.5 ±0.5

Spectroscopic Properties: λ 260 nm, ϵ 8.8 L mmol⁻¹ cm⁻¹ (Tris-HCl pH 7.5)

Applications:

Incorporation into RNA by T7 RNA polymerase-mediated *in vitro* transcription (up to 1400 bp tested). For a comprehensive protocol please refer to PP-501 or PP-501-Cy3/Cy5.

3'-Azide-Labeling of T7 promotor-containing oligonucleotides^[1,2,3]

The resulting azide-functionalized RNA can subsequently be processed via Cu(I)-free (azide-DBCO) or Cu(I)-catalyzed (azide-alkyne) click chemistry that offers the choice

- to introduce a Biotin group for subsequent purification tasks (via DBCO-functionalized Biotin or Alkynes of Biotin, respectively)

- to introduce fluorescent group for subsequent microscopic imaging (DBCO-functionalized fluorescent dyes or Alkynes of fluorescent dyes, respectively)

- to crosslink the RNA to azide- or alkyne functionalized biomolecules e.g.proteins

Related Products:

HighYield T7 RNA Synthesis Kit, #RNT-101 HighYield T7 Azide RNA Labeling Kit, #RNT-101-AZ

Selected References:

[1] Rao *et al.* (2012) Enzymatic incorporation of an azide-modified UTP analog into oligoribonucleotides for post-transcriptional chemical functionalization. *Nature Protocols* **7 (6)**:1097.

[2] Rao *et al.* (2012) Posttranscriptional chemical functionalization of azide-modified oligoribonucleotides by bioorthogonal click and Staudinger reactions. *Chem. Commun.* **48 (4)**:498.

[3] Savant *et al.* (2015) A versatile toolbox for posttranscriptional chemical labeling and imaging of RNA. *Nucleic Acid Res.* doi: 10.1093/nar/gkv903.

