5-Ethynyl-2’-deoxycytidine (5-EdC)

5-Ethynyl-2’-deoxycytidine

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK-N003-10</td>
<td>10 mg</td>
</tr>
</tbody>
</table>

Structural formula of 5-Ethynyl-2’-deoxycytidine (5-EdC)

For research use only!

Shipping: shipped at ambient temperature

Storage Conditions: store at -20 °C

Additional Storage Conditions: store dry and under inert gas

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 12 months after date of delivery

Molecular Formula: C₁₁H₁₃N₃O₄

Molecular Weight: 251.24 g/mol

Purity: ≥ 99 % (HPLC)

Form: off-white solid

Solubility: DMSO

Spectroscopic Properties: λ_{max} 291 nm; ε 8.5 L mmol⁻¹ cm⁻¹ (Tris-HCl pH 7.5)

Applications:

DNA synthesis monitoring¹

Description:

Ethynyl-labeled deoxycytidine (5-EdC) can be used as a replacement for BrdU (5-Bromo-2’-deoxyuridine) to measure *de novo* DNA synthesis during the S-phase of the cell cycle. 5-EdC is cell-permeable and incorporates into replicating DNA instead of its natural analog thymidine.

The resulting ethynyl-functionalized DNA can subsequently be detected via Cu(I)-catalyzed click chemistry that offers the choice to introduce a Biotin group (Azides of Biotin) for subsequent purification tasks or a fluorescent group (Azides of fluorescent dyes) for subsequent microscopic imaging [1].

Presolski *et al.*[²] and Hong *et al.*[³] provide a general protocol for Cu(I)-catalyzed click chemistry reactions that may be used as a starting point for the set up and optimization of individual assays.

Related Products:

5-Ethynyl-2’-deoxy-uridine (5-EdU), #CLK-N001

Copper (II)-Sulphate (CuSO₄), #CLK-M1004

Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), #CLK-1010

Sodium Ascorbate (Na-Ascorbate), #CLK-M1005

Selected References:

