DATA SHEET

DBCO-PEG₄-Amine

Dibenzylcyclooctyne-PEG₄-Amine

Cat. No.	Amount
CLK-A103P-25	25 mg
CLK-A103P-100	4 x 25 mg
CLK-A103P-500	500 mg

Structural formula of DBCO-PEG₄-Amine

For general laboratory use.

Shipping: shipped on dry ice

Storage Conditions: store at -20 °C

Additional Storage Conditions: store undissolved, for use prepare a fresh solution

Shelf Life: 12 months after date of delivery (undissolved)

Molecular Formula: C₂₉H₃₇N₃O₆

Molecular Weight: 523.63 g/mol

Exact Mass: 523.27 g/mol

CAS#: 1255942-08-5

Purity: ≥ 90 % (HPLC)

Form: oil

Color: slightly yellow to slightly brown

Solubility: DCM, DMF, DMSO, THF

Applications: Protein-peptide conjugates

Peptide-small molecule conjugates

¹⁸F radiolabelling

Protein-oligonucleotide conjugates

Surface modification

Description:

Unique carbonyl/carboxyl reactive dibenzylcyclooctyne, which reacts with acids, active esters and aldehydes. The very hydrophilic PEG_4 spacer enhances solubility in water as well as in commonly used organic solvents of moderate polarity. Furthermore, the very water soluble, hydrophilic spacer reduces non-specific binding. Due to its length, the 24 Å (20 atoms) long spacer gives ready accessibility to the dibenzylcyclooctyne for the azide binding.

Important Product Information

Do not use DTT, TCEP or $\beta\mbox{-mercaptoethanol},$ because they will reduce the azide.

Copper-free Click Reaction

• Prepare the azide-containing sample in reaction buffer.

- Add DBCO-protein conjugate to azide-containing sample.
- Recommendation: Add 1 mol equivalent of limiting protein to 1.5 3.0 mol equivalents of highest abundance protein.
- Incubate the reaction at room temperature for 2 4 hours or at 4 °C for 2 - 12 hours.
- The reaction is now ready for purification.

Troubleshooting

Problem: Low conjugation of DBCO and azide

- Possible reason: Suboptimal reaction conditions
 - Increase incubation time
 - Optimize conjugation conditions by altering molar excess
 - Perform conjugation reactions at 37 °C

Selected References:

Simon *et al.* (2012) Facile Double-Functionalization of Designed Ankyrin Repeat Proteins using Click and Thiol Chemistries. *Bioconjugate Chem.* **23 (2)**:279.

Zeng *et al.* (2012). ⁶⁴Cu Core-Labeled Nanoparticles with High Specific Activity via Metal-Free Click Chemistry. *ACS Nano.* **6 (6)**:5209.

Arumugam *et al.* (2011). [¹⁸F]Azadibenzocyclooctyne ([¹⁸F]ADIBO): A biocompatible radioactive labeling synthon for peptides using catalyst free

Jena Bioscience GmbH Löbstedter Str. 71 | 07749 Jena, Germany | Tel.:+49-3641-6285 000 https://www.jenabioscience.com

DBCO-PEG₄-Amine

Dibenzylcyclooctyne-PEG₄-Amine

[3+2] cycloaddition. Bioorg. Med. Chem. Lett. 21:6987.

Campbell-Verduyn *et al.* (2011). Strain-Promoted Copper-Free Click Chemistry for ¹⁸F Radiolabeling of Bombesin. *Angew. Chem. Int. Ed.* **50**:11117.

Debets *et al.* (2010) Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. *Chem. Commun.* **46**:97.

