

5-Dibenzylcyclooctyne-2'-deoxyuridine (5-DBCO-dU)

5-Dibenzylcyclooctyne-dU

Cat. No.	Amount
CLK-082-10	10 mg

 $Structural\ formula\ of\ 5-Dibenzyl cyclooctyne-2'-deoxyuridine\ (5-DBCO-dU)$

For general laboratory use.

Shipping: shipped at ambient temperature

Storage Conditions: store at -20 $^{\circ}\text{C}$

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 12 months after date of delivery **Molecular Formula:** C₃₁H₂₈N₄O₇ (free acid) **Molecular Weight:** 568.58 g/mol (free acid)

Exact Mass: 568.20 g/mol (free acid)

Purity: ≥ 95 % (HPLC)

Form: solid

Color: colorless to slightly yellow

Spectroscopic Properties: λ_{max} 289 nm, ϵ 12.5 L mmol⁻¹ cm⁻¹ (Tris-HCl

pH 7.5)

Applications:

DNA synthesis monitoring (potentially)

Description:

5-DBCO-dU (5-Dibenzylcyclooctyne-2'-deoxyuridine) can **potentially** be used as a replacement for BrdU (5-Bromo-2'-deoxyuridine) or the copper-catalyst requiring 5-EdU (5-Ethynyl-2'-deoxyuridine) to measure *de novo* DNA synthesis in proliferating cells.

5-DBCO-dU is cell permeable and may incorporate into replicating DNA instead of its natural analog thymidine.

The resulting DBCO-functionalized DNA can subsequently be detected via Cu(I)-free Click Chemistry that offers the choice to

- introduce a Biotin group for subsequent purification tasks (via Azides of Biotin)
- introduce a fluorescent group for subsequent microscopic imaging (via Azides of fluorescent dyes).

Related Products:

5-Ethynyl-2'-deoxy-uridine (5-EdU), #CLK-N001 5-Vinyl-2'-deoxyuridine (5-VdU), #CLK-050 5-Azidomethyl-2'-deoxyuridine(5-AmdU), #CLK-050