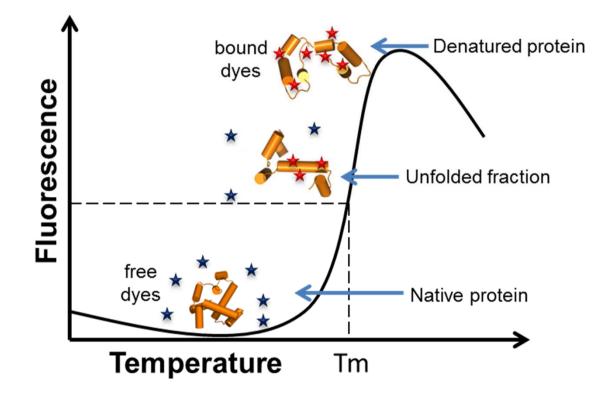


Protein Crystallization: Simply grab the needle from the haystack

Burg Warberg, September 29th 2016


Jena Bioscience GmbH Löbstedter Str. 71 07749 Jena, Germany Tel.: +49-3641-628-5000 Fax: +49-3641-628-5100 e-Mail: info@jenabioscience.com

Agenda

1. JBScreen Thermofluor

- 2. Membrane Proteins: JBScreen LCP & LCP Lipids
- **3.** Frag Xtal Screen

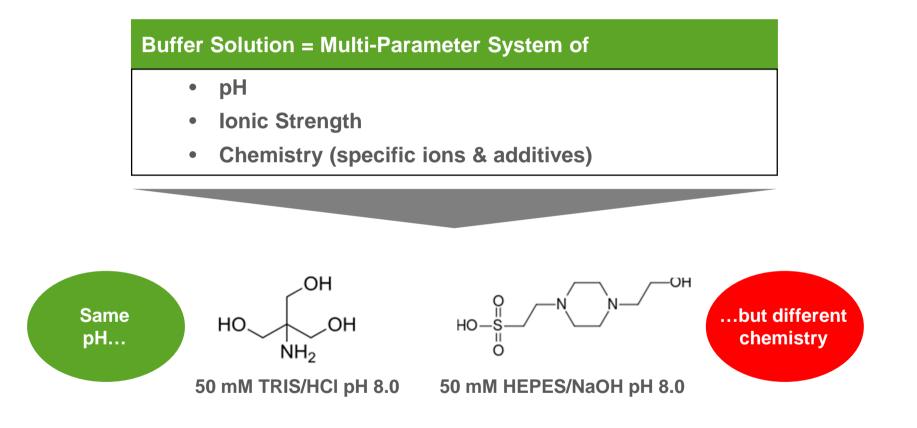

Crystallizability depends on a protein's thermostability^(1,2)

JBScreen Thermofluor determines thermostability as a protein's melting temperature (Tm)

- (1) Ericsson *et al.* (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. *Anal. Biochem.* 357(2):289.
- (2) Dupeux et al. (2011) A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Cryst. D 67:915.

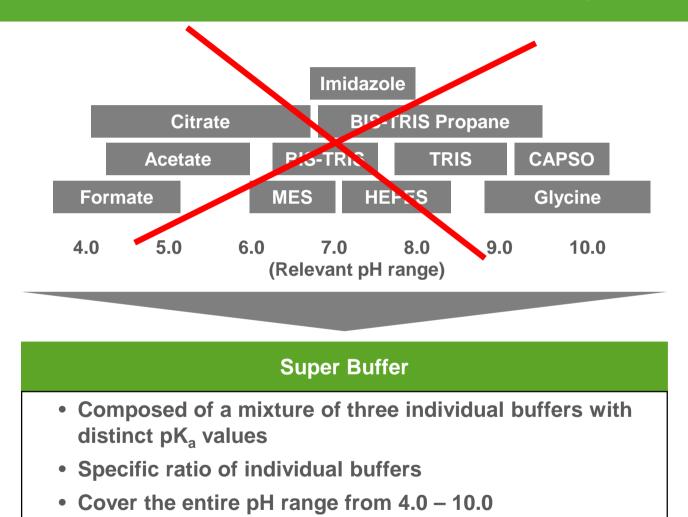
A protein's thermostability is affected by FUNDAMENTAL and SPECIFIC buffer components

SPECIFIC FACTORS affect energetically important hot spots on the protein surface

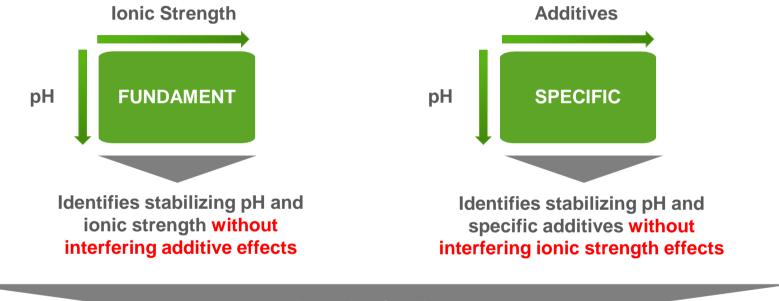

- <u>Proton concentration (i.e. pH):</u> Determines protein net charge
- <u>lonic strength:</u> Influences size of hydration shells

Salt: Ions with valency-specific effects on distinct sites

• <u>Additives:</u> Cofactors/Ligands that interact with active site


How to screen for thermostability systematically ...?

Conventional buffers do not allow an independent pH-screen... ...since pH, ionic strength and additives are interdependent variables


Conventional Screening inevitably changes multiple parameters simultaneously

Solution: JBScreen Thermofluor is based on "Super Buffers"⁽¹⁾

• Maintain a constant chemical environment for screening

With Super-Buffer based JBScreen Thermofluor FUNDAMENT and SPECIFIC simply grab for the needle in the haystack

Optimization / Refinement

- Different Buffers @ optimum pH (JBScreen Buffers & Buffers Xtreme)
- Concentration of specific ion(s)

Small money and time with JBScreen Thermofluor may safe big money and time during crystallization!

Screen	Cat.No.		
JBScreen Thermofluor FUNDAMENT → pure pH effect at various ionic strengths	CS-332		
JBScreen Thermofluor SPECIFIC → additive effects using high-scoring mono, di- and trivalent ions ⁽¹⁾	CS-333		
JBScreen Buffers → common buffers @ neutral pH	CS-214		
JBScreen Buffers Xtreme → common buffers @ extreme pH	CS-215		

JBScreen Thermofluor is the first commercially available systematic protein stability screen

Agenda

- **1. JBScreen Thermofluor**
- 2. Membrane Proteins: JBScreen LCP & LCP Lipids
- **3.** Frag Xtal Screen

JBScreen LCP is combined from the latest successful conditions

192 integral membrane proteins⁽¹⁾ were analyzed from the pdb⁽²⁾, evaluated and arranged to the novel JBScreen LCP:

- 96 conditions
- Structured by main precipitant
- Elimination of cacodylate and other highly toxic chemicals
- Elimination of metastable conditions

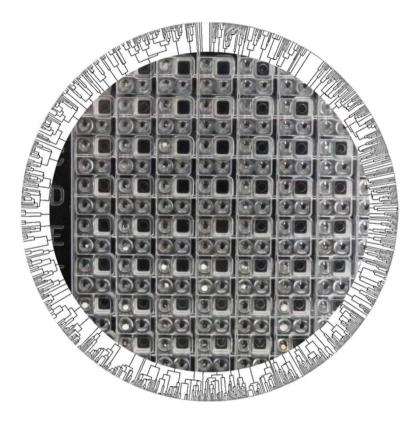
Product	Cat.No.
JBScreen LCP 4 x 24 solutions (10 ml each)	CS-340
JBScreen LCP HTS 96 solutions (1,7 ml each)	CS-213L

- (1) Caffrey (2015) A comprehensive review of the lipid cubic phase or *in meso* method for crystallizing membrane and soluble proteins and complexes. *Acta Cryst F* 71:3
- (2) http://www.rcsb.org/pdb/home/home.do

LCP Lipids: There is more than Monoolein^(1,2)

Cat. No.	Common Name	Abbreviation	Lipid#	C–C double bond						
X-LCP-101	Monoolein	9.9 MAG	C18:1	9 cis						
X-LCP-102	Monopalmitolein	9.7 MAG	C16:1	9 cis						
X-LCP-103	Monovaccenin	11.7 MAG	C18:1	11 cis						
X-LCP-104	Monoeicosenoin	11.9 MAG	C20:1	11 cis						
Change LCP parameters										
 Bilayer thickness Bending elasticity Packaging Polarity 										

Crystallization in LCP: Screen for the optimum condition and the optimum LCP Lipid


⁽¹⁾ Caffrey (2015) A comprehensive review of the lipid cubic phase or *in meso* method for crystallizing membrane and soluble proteins and complexes. *Acta Cryst F* 71:3

⁽²⁾ Caffrey and Cherezov (2009) Crystallizing Membrane Proteins Using Lipidic Mesophases. Nat Protoc. 4(5):706.

Agenda

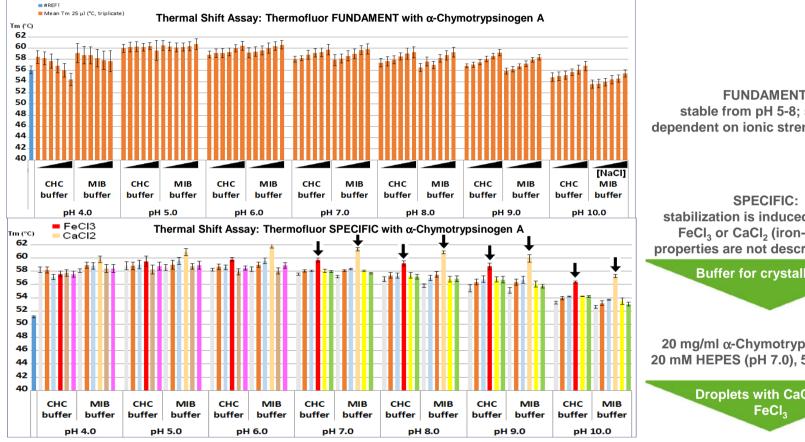
- **1. JBScreen Thermofluor**
- 2. Membrane Proteins: JBScreen LCP & LCP Lipids
- 3. Frag Xtal Screen

Frag Xtal Screen is coming soon

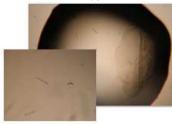
- 96 solid fragments
- Provided in 3 well crystallization plate
- Designed for crystal soaking
- Direct and easy crystallographic analysis of fragment binding⁽¹⁻³⁾

(1) Huschmann *et al.* (2016) Structures of endothiapepsin-fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library. *Acta Cryst F* 72:346.

(2) Schiebel *et al.* (2016) Six Biophysical Screening Methods Miss a Large Proportion of Crystallographic Discovered Fragment Hits: A Case Study. *ACS Chem. Biol.* 11:1693.

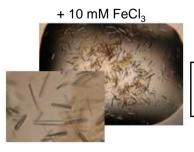

(3) Schiebel *et al.* (2015) One Question, Multiple Answers: Biochemical and Biophysical Screening Methods Retrieve Deviating Fragment Hit Lists. *ChemMedChem* 10:1511.

Our Xtal group is very pleased to answer your inquiries! xtals@jenabioscience.com



Backups

Stabilizing effects on α -Chymotrypsinogen are directly correlated with crystallizability



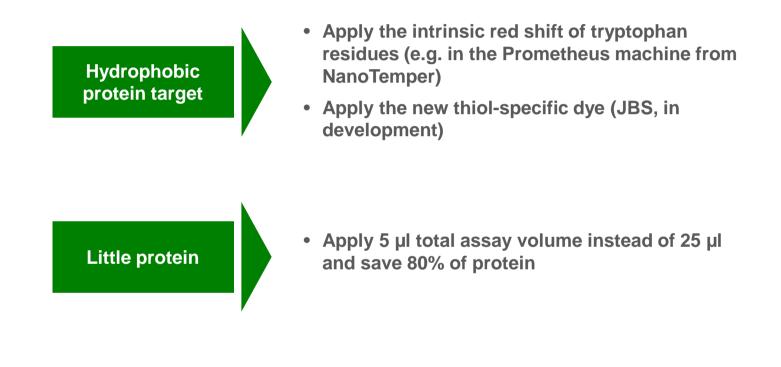
(-)

+ 20 mM CaCl₂

FUNDAMENT: stable from pH 5-8; stability dependent on ionic strength at pH>6

stabilization is induced by either FeCl₂ or CaCl₂ (iron-binding properties are not described so far)

Buffer for crystallization


20 mg/ml α-Chymotrypsinogen in 20 mM HEPES (pH 7.0), 500 mM NaCl

Droplets with CaCl₂ and

Crystallization: 100 mM Phosphate (pH 7.5), 20% PEG 3350, 25% PEG 400

Crystal growth is promoted by CaCl₂ and FeCl₃

Apply JBScreen Thermofluor for hydrophobic targets

Promising approach for membrane proteins, ligands, ...

JBScreen Thermofluor FUNDAMENT covers pH 4-10 and ionic strength 0...1,000 mM

		1	2	3	4	5	6	7	8	9	10	11	12	
		CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	TP + Dye	TP + Dye	TP + Dye	
	A	CB-1	CB-1	CB-1	CB-2	CB-2	CB-2	CB-3	CB-3	CB-3	Original Buffer	Original Buffer	Original Buffer	
		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
	В		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl	
		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	C		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl	
		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
	D		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl	
500 - 1400		7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
pН	E		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl	
		8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
	F		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl	
		9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	
	G		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl	
		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
	н		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl		50 mM NaCl	125 mM NaCl	250 mM NaCl	500 mM NaCl	1 M NaCl	
	100 mM Super Buffer 1								100 mM Super Buffer 2					
	lonic Strength									lonic \$	Strength			

Super Buffer 1: composed of Citric acid, HEPES and CHES buffers

Super Buffer 2: composed of Malonic acid, Imidazole and Boric acid buffers

JBScreen Thermofluor SPECIFIC screens for high-scoring⁽¹⁾ mono-, di- and trivalent cations

		1	2	3	4	5	6	7	8	9	10	11	12
		CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	CP + Dye	TP + Dye	TP + Dye	TP + Dye
		CB-1	CB-1	CB-1	CB-2	CB-2	CB-2	CB-3	CB-3	CB-3	Original Buffer	Original Buffer	Original Buffer
		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	В	}		20 mM MgSO4	10 mM FeCl3	10 mM ZnCl2	10 mM MnCl2			20 mM MgSO4	20 mM CaCl2	10 mM ZnCl2	10 mM MnCl2
		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
	(20 mM MgSO4	10 mM FeCl3	10 mM ZnCl2	10 mM MnCl2			20 mM MgSO4	20 mM CaCl2	10 mM ZnCl2	10 mM MnCl2
		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
)		20 mM MgSO4	10 mM FeCl3	10 mM ZnCl2	10 mM MnCl2			20 mM MgSO4	20 mM CaCl2	10 mM ZnCl2	10 mM MnCl2
		7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
рН	E			20 mM MgSO4	10 mM FeCl3	20 mM LiCl	20 mM KCl			20 mM MgSO4	20 mM CaCl2	20 mM LiCl	20 mM KCl
		8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
	F			20 mM MgSO4	10 mM FeCl3	20 mM LiCl	20 mM KCl			20 mM MgSO4	20 mM CaCl2	20 mM LiCl	20 mM KCl
		9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
	(ì		20 mM MgSO4	10 mM FeCl3	20 mM LiCl	20 mM KCl			20 mM MgSO4	20 mM CaCl2	20 mM LiCl	20 mM KCl
		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
	ŀ			20 mM MgSO4	10 mM FeCl3	20 mM LiCl	20 mM KCl			20 mM MgSO4	20 mM CaCl2	20 mM LiCl	20 mM KCl
	100 mM Super Buffer 1							100 mM Super Buffer 2					
	150 mM NaCl							150 mM NaCl					

Super Buffer 1: composed of Citric acid, HEPES and CHES buffers

Super Buffer 2: composed of Malonic acid, Imidazole and Boric acid buffers

(1) Mostly occuring cations that appear as ligands in protein strucutres on the PDB (Protein Data Bank)