PI3K$\text{\textgreek{d}}$GST

Phosphoinositide 3-kinase p110δ/p85α
Human, recombinant, Sf9 insect cells

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-345</td>
<td>10 μg</td>
</tr>
</tbody>
</table>

For in vitro use only
Quality guaranteed for 12 months
Store at -20°C

Avoid freeze / thaw cycles

Form
Liquid. Supplied in 25 mM Tris-HCl pH 8.0, 50 mM NaCl, 0.5 mM MgCl$_2$ and 50% glycerol.

Activity
3,000 units/mg (1 unit is defined as 1 picomole phosphate transferred to PIP$_2$ per minute).

Molecular Weight
p110δ: 115 kDa without tag and 135 kDa with tag
p85α: 83.5 kDa

Purity
>95% by SDS-PAGE

Description
The class IA PI3Kδ is expressed in endothelial and in white blood cells. Recently it was shown that the inactivation of PI3Kδ in bone marrow mast cells (BBMCs) leads to defective stem cell factor-mediated proliferation, adhesion and migration of these cells, and to impaired allergen-IgE-induced degranulation and cytokine release. In neutrophils a role for PI3Kδ in TNF-α-induced signalling was demonstrated by a reduction in Aktphosphorylation and PDK1 activity upon treatment with the δ-specific inhibitor IC87114.

The PI3Kδ catalytic and regulatory subunits are coexpressed in Sf9 insect cells. The catalytic subunit carries a GST-Tag and the heterodimer was purified by affinity chromatography.

The GST-Tag facilitates the protein’s application in typical GST pull-down assays.

General
Phosphoinositide 3-kinases (PI3Ks) phosphorylate phosphatidylinositol (PIs) at their 3’-OH position generating lipid second messengers and thereby regulate numerous biological processes including cell growth, differentiation, survival, proliferation, migration and metabolism. On the basis of structural similarities and substrate specificity, the PI3K family can be subdivided into three classes termed I, II, and III. All human class I members are heterodimers consisting of a catalytic subunit (MW approx. 110 kDa) and a noncatalytic subunit (MW 50, 55, 85, or 101 kDa) and are known to phosphorylate phosphatidylinositol (PI), phosphatidylinositol-4-mono-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP$_2$) in vitro.

The class I members can be further subdivided into class IA and IB PI3Ks. Class IA exists in three isoforms (p110α, p110β and p110δ) whereas the only class IB member is termed p110γ. Class IA PI3Ks are activated by adaptor proteins such as Ras or BCAP, or tyrosine-kinase-associated receptors including antigen, costimulatory and cytokine receptors (e.g. CD19, CD28, Insulin receptor, EGFR, and PDGFR). p110γ is activated by G-protein-coupled receptors (GPCRs). Effectors of class I PI3Ks are pleckstrin-homology domain proteins such as Akt/PKB, BTK, TEC, ITK, BAM32, and small GTPases (e.g. Cdc42, Rac, or Ras). The action of PI3Ks is regulated by the phosphatidylinositol-3,4,5-trisphosphate phosphatases SHIP and PTEN.
PI3KδGST
Phosphoinositide 3-kinase p110δ/p85α
human, recombinant, Sf9 insect cells

Selected References: