Research Paper

Characterization of the growth behavior of *Leishmania tarentolae* – a new expression system for recombinant proteins

Claudia Fritsche¹, Mandy Sitz¹, Norman Weiland¹, Reinhard Breitling² and Hans-Dieter Pohl¹

¹ Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Jena, Germany
² Jena Bioscience GmbH, Jena, Germany

Biotechnological production of recombinant proteins for human therapy requires a cultivation of the host organism in a nutrient medium free of animal substances. Therefore, various nutrient media for the new expression system *Leishmania tarentolae* were developed and examined according to their cultivation conditions as static suspension culture and agitated culture. Investigations resulted in the development of a serum-free but hemin containing medium, based on yeast extract and buffer salts. Here we report that a high and stable specific growth rate of \(0.103 \, h^{-1}\) and a maximal cell density of \(1 \times 10^9 \, \text{cells ml}^{-1}\) is obtained in an alternative medium, the YE-medium. For the newly developed medium, the successful expression of enhanced green fluorescent protein and the adaptation of the cultivation from the agitated culture to the bioreactor could be shown. Furthermore, an analytical method for detection of the essential, organic iron source hemin was established. The consumption of hemin was monitored because hemin is a potentially important process parameter for bioprocess control. With knowledge of these results, an improved expression system is available as an alternative to commonly used cell cultures for the production of recombinant proteins.

Keywords: *Leishmania* / Nutrient media / Hemin detection / EGFP expression / Specific growth rate

Received: March 27, 2007; returned for modification: May 14, 2007; accepted: June 03, 2007

DOI 10.1002/jobm.200710111

Introduction

Leishmania species are protozoa of the genus Trypanosoma with a complex life cycle (promastigotes and amastigotes). *Leishmania tarentolae* is a parasite of the gecko *Tarentolae annularis* and has been developed as new eukaryotic expression system for the production of recombinant proteins with an animal-like N-glycosylation pattern, as shown by Breitling et al. for erythropoietin expression (Breitling et al. 2002). The system is available with constitutive or regulated transcription (Breitling et al. 2002, Kushnir et al. 2005) and can be considered as an alternative expression system to mammalian cell cultures (Sodoyer 2004). The main advantages are the higher specific growth rate compared to mammalian cells and cultivation in low cost media.

Prior to expression studies the main growth parameters for the wild type organism (parameters such as specific cell division rate (\(\nu\)), specific growth rate (\(\mu\)), doubling time (\(t_d\)), number of generations (\(k\)), main carbon source, yield coefficient (\(Y\)) and maximal cell densities (\(N_{\text{max}}\)) had to be determined. To establish the system for production of recombinant proteins for therapeutic purposes, the nutrient medium must be free of animal substances due to regulatory requirements (Sodoyer 2004).

Promastigotes are mainly cultivated in liquid media to which animal serum or blood is added, and in nutrient media of animal origin (Chang and Fish 1983). A commonly used medium is the Brain Heart Infusion
effect of hemin on protein synthesis and cell proliferation in *L. donovani*. Here we have established an analytical method to determine consumption of hemin as a potentially important process parameter.

We were able to demonstrate the application of that alternative medium for expression of enhanced green fluorescent protein (EGFP) and we were also able to adapt agitated cultures to bioreactor cultivation.

Materials and methods

Strain and cultivation conditions

The *L. tarentolae* laboratory strain p10 (Jena Bioscience, Germany) was maintained at 26 °C as static suspension culture in 25 cm² plastic cell culture flasks filled with 10 ml nutrient broth and diluted into new medium every 2–3 days. For experiments with agitated cultures, the cells were cultivated in 250 ml shaker flasks with four baffles filled with 50 ml nutrient broth at 26 °C and 140 rpm in a shaker water bath (Julabo SW20, JulaW Laborteknik, Germany). Inoculation was done from a late logarithmic phase growing agitated preculture containing the examined medium, which was previously inoculated from a static suspension culture. If necessary, the inoculum was centrifuged (2000 × g,

Table 1. Comparison of growth parameters for *Leishmania* species of suspension cultures from literature (selection). All reported data observed in static suspension culture.

<table>
<thead>
<tr>
<th>Type of medium</th>
<th>Author</th>
<th>Species</th>
<th>Ingredients of the medium</th>
<th>N_{max} $\times 10^6$ [cells ml$^{-1}$]</th>
<th>ν [h$^{-1}$]</th>
<th>t_ν [h]</th>
<th>k [--]</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex</td>
<td>Meehan et al. (2000)</td>
<td>L. tarentolae</td>
<td>BHI + hemin, peptone, casein hydrolysate, beef & yeast extract</td>
<td>200</td>
<td>0.116b)</td>
<td>∼6</td>
<td>1.6a)</td>
</tr>
<tr>
<td></td>
<td>Ali et al. (1998)</td>
<td>L. major</td>
<td>peptone, yeast extract, triplicate, bovine haemoglobin</td>
<td>24</td>
<td>0.039b)</td>
<td>17.8a)</td>
<td>18.8b)</td>
</tr>
<tr>
<td></td>
<td>Limoncu et al. (1997)</td>
<td>L. infantum</td>
<td>peptone, yeast extract, triptolate, bovine haemoglobin</td>
<td>∼2</td>
<td>0.02b)</td>
<td>∼35b)</td>
<td>7.7b)</td>
</tr>
<tr>
<td></td>
<td>Palomino (1982)</td>
<td>L. braziliensis</td>
<td>peptone +10% FCS, yeast autolysate</td>
<td>40</td>
<td>0.024b)</td>
<td>∼28.9b)</td>
<td>5.8b)</td>
</tr>
<tr>
<td>Semi-defined</td>
<td>Ali et al. (1998)</td>
<td>L. major</td>
<td>M199+10% serum +2% urine</td>
<td>22</td>
<td>0.057b)</td>
<td>∼12.2a)</td>
<td>7.9b)</td>
</tr>
<tr>
<td></td>
<td>Limoncu et al. (1997)</td>
<td>L. infantum</td>
<td>RPMI 1640 +10% FCS</td>
<td>21</td>
<td>0.025b)</td>
<td>27.7a)</td>
<td>7.7b)</td>
</tr>
<tr>
<td>Defined</td>
<td>McCarthy-Burke et al. (1991)</td>
<td>L. donovani</td>
<td>M199 + HEPES, folic acid, hemin, eagles vitamins</td>
<td>40</td>
<td>0.077</td>
<td>8.9</td>
<td>∼6.3b)</td>
</tr>
<tr>
<td></td>
<td>O’Daly et al. (1988)</td>
<td>L. donovani</td>
<td>amino acids, nucleotide, vitamins, salts, hemin</td>
<td>∼70</td>
<td>0.03b)</td>
<td>23.1a)</td>
<td>6.6b)</td>
</tr>
<tr>
<td></td>
<td>Melo et al. (1985)</td>
<td>L. tarentolae</td>
<td>amino acids, hemin vitamins, salts</td>
<td>35</td>
<td>0.008b)</td>
<td>86.6a)</td>
<td>2.5b)</td>
</tr>
<tr>
<td></td>
<td>Merlen et al. (1999)</td>
<td>L. donovani</td>
<td>amino acids, salts, vitamins, hemin, nucleotides</td>
<td>∼79</td>
<td>0.023b)</td>
<td>∼30a)</td>
<td>7.3b)</td>
</tr>
<tr>
<td></td>
<td>Trager (1957)</td>
<td>L. donovani</td>
<td>amino acids, salts, vitamins, hemin, purine, pyrimidine</td>
<td>50</td>
<td>—b)</td>
<td>—b)</td>
<td>—b)</td>
</tr>
</tbody>
</table>

a) – calculation from literature data; b) – not specified.

(BHI), partially supplemented with serum. This medium exhibits a risk for contamination of the recombinant product e.g. with viruses or with prion proteins responsible for bovine spongiform encephalopathy (BSE; Mad Cow’s disease) (Robb 1975, Yamamoto and Akama 1969). Various other media have been described (Chang and Fish 1983, Schuster and Sullivan 2002). These are summarized in Table 1. BHI-medium only allowed to obtain high cell densities of *Leishmania* species. In many publications it is emphasized, that not all *Leishmania* species and strains grow in the reported synthetic media, because they differ in their nutritional requirements (O’Daly and Rodriguez 1988, Melo et al. 1985, Merlen et al. 1999). Therefore, transfer of results from one species to another is rarely successful.

Summarizing the results from the literature, *L. tarentolae* cannot currently be cultivated to cell densities $>2 \times 10^8$ cells ml$^{-1}$ with a high specific growth rate in serum-free and animal substances-free medium. Therefore, we developed an alternative medium, serum-free and containing only hemin as substance of animal origin. Hemin is essential for growth and has been added to culture medium, e.g. by Pal and Joshi-Purandare (2001), who were able to demonstrate a dose-dependent effect of hemin on protein synthesis and cell proliferation in *L. donovani*. Here we have established an analytical method to determine consumption of hemin as a potentially important process parameter.

We were able to demonstrate the application of that alternative medium for expression of enhanced green fluorescent protein (EGFP) and we were also able to adapt agitated cultures to bioreactor cultivation.
The media used are listed in Table 2. Ingredients were obtained from Becton Dickinson, USA. Salts for buffer preparation were of analytical grade and from Merck, Germany. Prior to inoculation glucose was added to a final concentration of 5 mg l\(^{-1}\) from a sterile stock solution. Penicillin-Streptomycin (Invitrogen, USA) was supplemented to a final concentration of 2.5 g l\(^{-1}\) and additionally supplemented with 100 mg l\(^{-1}\) nourseothricin (Jena Bioscience, Germany). During cultivation, 1 ml samples were taken, centrifuged (2000 \(\times\) g, 10 min) to reduce volume and the pellet was used for inoculation. Minimal cell density was approximately 2 \(\times\) 10\(^7\) cells ml\(^{-1}\).

Preparation of nutrient media

The media used are listed in Table 2. Glucose was measured by the glucometer ECA PD10 (Prüfgerätewerk Medingen, Germany). PH was measured externally with the pH Meter 526 (WTW, Germany). Prior to inoculation glucose was added to a final concentration of 5 mg l\(^{-1}\) from a sterile stock solution of 50 unit's ml\(^{-1}\) to avoid bacterial contamination. Hemin (Sigma-Aldrich, Germany) was added to a final concentration of 5 mg l\(^{-1}\) from a sterile stock solution of 2.5 g l\(^{-1}\) hemin in 50% triethanolamine (Sigma, USA).

Determination of growth

Growth was monitored by measuring cell density using a cell counter (Coulter Z2, Coulter Electronics, USA). Optical density was determined at 600 nm with the spectrometer Spectronic 20 Genesys (Spectronic Instruments, USA). Glucose was measured by the glucometer ECA PD10 (Prüfgerätewerk Medingen, Germany). PH was measured externally with the pH Meter 526 (WTW, Germany). Pictures were taken by the Canon Power Shot G5 camera under phase contrast 2 in a light microscope (Carl Zeiss, Germany).

Bioreactor cultivation

L. tarentolae was cultivated in a 2 l stirred tank bioreactor (Biostat MD, B. Braun, Germany) at 26 °C, airflow 1 VVM and rotation speed 100–300 rpm. For reduction of shear stress, 2-blade turbines were used. PH was uncontrolled. YE-medium was prepared according to Table 2 and supplemented with 3 g l\(^{-1}\) glucose, 50 unit's ml\(^{-1}\) penicillin-streptomycin and 1 mg l\(^{-1}\) hemin. Growth and glucose consumption was detected as described previously. Cells for inoculation originated from a three days old static suspension culture (10 ml), scaled-up stepwise from 1 \(\times\) 50 ml to 3 \(\times\) 100 ml over two days to provide sufficient cell concentrations in the bioreactor.

EGFP-expression studies

For expression studies, the recombinant strain L. tarentolae p10::F9Begfp1.4dBsat#12 (Jena Bioscience, Germany) with the gene for EGFP (Enhanced Green Fluorescent Protein), chromosomal ssu integrated, was cultivated in the various media as described previously and additionally supplemented with 100 mg l\(^{-1}\) nourseothricin (Jena Bioscience, Germany). During cultivation, 1 ml samples were taken, centrifuged (2000 \(\times\) g, 20°C, 10 min) and washed with 0.9% NaCl solution. Pellet was resuspended in buffer (20 mM HEPES, 5 mM EDTA, 2 mM DTT) and disintegrated by sonification (application of energy \(\sim\) 400 Ws) (UP400S, Dr. Hielscher, Germany). Cell debris were removed by centrifugation (6000 \(\times\) g, 4 °C, 5 min) and analyzed by sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions according to the method of Laemmli (1970) with 12.5% polyacrylamide gels. EGFP-expression was examined in agitated culture.

Determination of hemin consumption

The determination of the hemin content was conducted with an aqueous 2-phase-system according to the method of Lombardo \textit{et al.} (2005). Chemicals used were either from Carl Roth, Germany, or from Merck, Germany. Sample preparation was done in 15 ml Rotilabo® centrifuge tubes (Carl Roth, Germany), filled with 4 ml sample and mixed with 2 ml 50 mM glycine-HCl buffer, pH 2. If hemin concentration had to be determined in the YE-medium, 2 ml DMSO was added. After mixing, the pH was adjusted to pH 2 with 25% or 10% HCl solution, followed by addition of 200 µl of 5 M NaCl. After vortexing, 2 ml chloroform was added and mixed vig-
orously three times for 5 sec for optimal distribution of hemin in the organic phase. Phase separation was achieved by centrifugation (2000 × g, 20 °C and 5 min). The bottom phase (chloroform) was transferred into a 1 ml quartz cuvette and the absorption was recorded in a microplate reader (Lambda Scan 200, BIO-TEC INSTRUMENTS, USA). Quantification of the hemin content was done by estimation of the peak area (from 340–450 nm) including base line neutralization.

The standard curve was determined with a 5 mg l⁻¹ hemin solution (prepared with 0.5% triethanolamine) and diluted stepwise with aqua dest. Complete dissolution of hemin was achieved by exposing the solution for 1 min to an ultrasonic bath with a power output of 50%. Consumption of hemin was measured during growth in YE-medium in an agitated culture as described previously.

Basic equations for the evaluation of the results

The growth of *L. tarentolae* was analyzed by calculation of characteristic values according to the equations 1 and 2. The variables are the cell density \(N\) in cells ml⁻¹, the specific cell division rate \(\nu\) in h⁻¹, cell dry weight \(x\) in g l⁻¹, calculated from OD by a correlation factor, and the specific growth rate \(\mu\) in h⁻¹.

\[
\frac{dN}{dt} = \nu N \tag{1}
\]

\[
\frac{dx}{dt} = \mu x \tag{2}
\]

Furthermore, yield coefficients were determined according to equation 3 and 4, where \(\Delta N\) is the produced cell density and \(\Delta S\) the consumed glucose concentration in a defined time interval and volume. Similarly, \(\Delta x\) is the produced cell dry weight and \(\Delta H\) the consumed hemin concentration in a defined time interval and volume.

\[
Y_{N/S} = \frac{\Delta N}{\Delta S} \tag{3}
\]

\[
Y_{X/H} = \frac{\Delta x}{\Delta H} \tag{4}
\]

Results

Growth kinetics of static and agitated cultures in various nutrient media

The growth behavior of *L. tarentolae* in the different nutrient media LEXSY Broth BHI, TSB and TB was determined in static suspension cultures, which are used to provide sufficient cell counts for growth experiments and agitated cultures. Kinetics were determined after at least four sub-passages in the new medium under static conditions to allow adaptation of the cells and measurement of a representative growth curve.

Fig. 1 clearly shows that each nutrient medium supported the growth of *L. tarentolae* and the cells could be cultivated in the media with reduced content of animal substances (TSB and TB). Mean specific cell division rates were 0.063–0.054 h⁻¹ in static suspension cultures (see Table 3). Over the total cultivation time, 3.9–4.4 generations were reached.

In agitated cultures, \(\nu\) was approximately 1.5× higher than in the static suspension culture due to a better supply of oxygen in agitated liquids. Doubling times were between 6.7–7.7 h (Table 3) and remarkably low in comparison to literature values (Table 1). The exponential growth finished at 2.6–3.65 × 10⁶ cells ml⁻¹. At the end of cultivation, a maximal cell density \(N_{\text{max}}\) of 9 × 10⁸ cells ml⁻¹ could be obtained (TB-medium). In contrast to literature data, these values are extremely high, because 2 × 10⁶ cells ml⁻¹ was reported by Meehan *et al.* (2000) as the highest cell density (BHI-medium).

Glucose was used as the primary carbon source in all media examined. \(Y_{N/S}\) was calculated according to the equation 3 neglecting the maintenance metabolism. During the exponential growth phase in agitated cultures, \(Y_{N/S}\) varied between 1.1 × 10⁻¹ and 1.4 × 10⁻⁶ cells g⁻¹ glucose (Table 3). The lowest value was noticed using TSB-medium, where cells consumed more glucose for biomass production than in the other media. Probably
maintenance metabolism affected the calculation to a greater extent in this medium.

Consumption of glucose was accompanied by a decrease in pH resulting in changed physiological conditions in the media. The extent of the pH-shift differed between the media, seen in Table 3, and was largest in the TSB-medium, where a minimal level of pH 6.33 was achieved. Stabilization of the pH in the neutral range resulted in development of the TB-medium with a phosphate buffer system, where the pH drop could be limited to 6.9.

The physiological and morphological appearance of the cells in different media during exponential growth was similar.

When glucose was exhausted in all media, the cells switched over to alternative energy sources probably amino acids. As a result, pH increased and ν was strongly reduced in comparison to glucose consumption, because the cells were mainly in maintenance metabolism. The final pH was maximal in the range of 7.4 to 7.7 where the cells appeared to be very thin and partially degenerated. Furthermore, growth could not be reactivated by passing the cells into fresh medium.

Summarizing the previous results, L. tarentolae can be grown in various complex media with high and stable specific cell division rates. The weight content of animal-derived substances is reduced by 25% (W_s/ν) in TSB and by 50% (W_s/ν) in TB-medium in comparison to LEXSY Broth BHI. TB- and TSB-medium contain beside hemin only a tryptic digest of casein, the main protein of milk, as substances of animal origin. On the one hand, in general opinion milk is regarded as free of prion proteins and therefore safe for humans. On the other hand, prion proteins can be detected in milk by an enzyme immunoassay (Boesen 2005). Furthermore, problems with batch-to-batch variations of casein, reported by Mueller and Miller (1954), resulted in changing yields of tetanus toxin production. For those reasons, the casein content in the nutrient medium has to be eliminated.

Long-term stability of the static suspension culture

The growth performance of the static suspension culture in TB-medium was monitored over 70 sub-passages to ensure the stability of the cell material used for experiments with agitated cultures. The mean specific growth rate (determined over 2 days) was 0.043 h$^{-1}$ until passage 60. In passage number 70, cells failed to grow. Generally, static suspension culture can be used until passage 50 to ensure stable growth performance including a safety factor. Calculation of generation times resulted in more than 150 generations within 50 passages.

Reduction of the TB-medium with “design of experiments”

Detailed examinations of an effect to μ by the single substances BactoTM Yeast Extract and BactoTM Tryptone of the TB-medium were conducted using the methods of “design of experiments” in a central composition experimental design (32-design) in agitated cultures. Evaluation was done with a quadratic model and the method of the smallest squares of errors. The resulting equation (data not shown) significantly showed that BactoTM Yeast Extract is the main factor in the TB-medium (6 times higher influence) and responsible for high specific growth rates. Influence of BactoTM Tryptone is negligible, because it can be removed from the medium without drastic reduction of growth parameters. The newly developed YE-medium with consisting of BactoTM Yeast Extract and buffer salts, has to be evaluated for stable growth.

Alternative nutrient medium for cultivation of L. tarentolae

The YE-medium provides the opportunity to cultivate L. tarentolae in a medium containing only hemin as the substance of animal origin. In static suspension culture, ν was 0.06 h$^{-1}$ (see Figure 2) and a stable growth over more than 50 passages could be found. A mean specific growth rate of 0.103 h$^{-1}$ ± 0.007 h$^{-1}$ was observed.

<table>
<thead>
<tr>
<th>Culture type</th>
<th>Medium</th>
<th>ν [h$^{-1}$]</th>
<th>t_o [h]</th>
<th>k [-]</th>
<th>$\dot{Y}_{X/S}$ [cells g$^{-1}$ glucose]</th>
<th>pH-shift down</th>
</tr>
</thead>
<tbody>
<tr>
<td>static</td>
<td>LEXSY Broth BHI</td>
<td>0.063</td>
<td>11.0</td>
<td>2.6</td>
<td>8.9×10^7</td>
<td>7.6 → 7.0</td>
</tr>
<tr>
<td></td>
<td>TSB</td>
<td>0.054</td>
<td>12.8</td>
<td>2.4</td>
<td>9.1×10^7</td>
<td>7.1 → 6.0</td>
</tr>
<tr>
<td></td>
<td>TB</td>
<td>0.056</td>
<td>12.4</td>
<td>2.4</td>
<td>1.2×10^8</td>
<td>7.3 → 7.2</td>
</tr>
<tr>
<td>agitated</td>
<td>LEXSY Broth BHI</td>
<td>0.103</td>
<td>6.7</td>
<td>3.9</td>
<td>1.4×10^8</td>
<td>7.6 → 6.9</td>
</tr>
<tr>
<td></td>
<td>TSB</td>
<td>0.090</td>
<td>7.7</td>
<td>3.3</td>
<td>1.1×10^8</td>
<td>7.1 → 6.1</td>
</tr>
<tr>
<td></td>
<td>TB</td>
<td>0.097</td>
<td>7.1</td>
<td>3.6</td>
<td>1.3×10^8</td>
<td>7.3 → 7.0</td>
</tr>
</tbody>
</table>
Figure 2. Growth kinetics of *L. tarentolae* in YE-medium; (●) 250 ml shaker flask with baffles filled with 50 ml medium, cell density \(N_0 = 1.97 \times 10^7\) cells ml\(^{-1}\); (▲) static suspension culture with 10 ml medium in 25 cm\(^2\) cell culture flasks, \(N_0 = 2.42 \times 10^7\) cells ml\(^{-1}\).

Figure 3. Microscopic picture of *L. tarentolae* in A) LEXSY Broth BHI and b) YE-medium during exponential growth, phase contrast 2. Pictures were modified with levels adjustment to improve contrast and brightness across the entire picture.

Figure 4. The specific rates \(\mu\) (●) and \(\nu\) (□) of *L. tarentolae* in YE-medium (250 ml shaker flask with baffles filled with 50 ml medium) between two measurement points are plotted to the average of the time intervals. Values of the logarithmic evaluation for \(\mu\) (– – –) and \(\nu\) (---) with assumed transition intervals (-----) are shown. Furthermore, glucose kinetic is plotted (•).

in agitated cultures. Glucose was used as main carbon source and \(Y_{NS}\) was calculated to \(1.18 \times 10^8\) cells g\(^{-1}\) glucose. Cells showed normal promastigote shape (seen in Fig. 3B) in comparison to cells in BHI-medium.

A correlation between cell density (\(N\)) and optical density (\(OD\)) at 600 nm wavelength was evident during exponential growth and in the early stationary phase. Therefore the correlation \(N \sim OD \rightarrow x \sim N\) is allowed and \(\nu = \mu\) as Figure 1 demonstrates. Later on, the correspondence between these parameters failed due to morphological changes of the cells and \(\nu \neq \mu\).

During consumption of glucose, the decline in pH was limited to pH 7.0 as an effect of the salt buffer system used. More than 4.1 generations were observed during exponential growth with a maximal cell density of \(3.4 \times 10^8\) cells ml\(^{-1}\), increasing to \(1 \times 10^9\) cells ml\(^{-1}\) and 5.7 generations when cultivation was finished.

When glucose was exhausted in the medium, pH increased continuously and reached a maximal value of 7.85, when cultivation was terminated. After observing the cells under the microscope, morphological changes attracted attention. The cells appeared to be very thin, needle-like, and partially degenerated in shape and size. Possible reasons for this could be that pH was moving out of physiological range or the extreme age of the culture.

Bioreactor cultivation

The YE-medium was examined for its usability for bioreactor cultivations. The resulting plot is shown in Figure 5. During glucose consumption, \(\nu\) was 0.092 h\(^{-1}\) and \(Y_{NS} = 1.6 \times 10^8\) cells g\(^{-1}\) glucose. Limitation of glucose was accompanied by an increase in pH, corresponding to the observations in static and agitated cul-
Batch fermentation of L. tarentolae in a 2 l bioreactor (YE-medium, 26 °C). Plot of \(\nu \) shows the value of the logarithmic evaluation (\(--\)) with assumed transition intervals (\(\cdots\)) and the calculated values between measurement points plotted to the average of the time interval (\(\circ\)). Furthermore, the pH (\(\Delta\)) and the glucose (\(\circ\)) kinetics are shown.

Maximal cell density of \(8.5 \times 10^8\) cells ml\(^{-1}\) was achieved.

Summarizing the results, we have established a nutrient medium for L. tarentolae cultivation, which is serum-free and contains only hemin as substance of animal origin. The main component BactoTM Yeast Extract is regarded as non-animal product by regulatory authorities (BactoTM manuals, www.bd.com/ds/technicalCenter/inserts/difcoBblManual.asp, Becton Dickinson, USA, 10.04.2006). Yeast Extract is a concentrate of the total water-soluble fraction of autolysed Saccharomyces cerevisiae cells. The content of vitamins (B-group), nitrogen, amino acids and carbon is very high. Commonly Yeast Extract is used in microbial cultivation of bacteria, yeast, cell and insect cultures. L. tarentolae can be grown stably and reproducibly with doubling times of 6.7 h in the YE-medium (Fritsche et al. 2006).

EGFP-expression studies

Production of EGFP was analyzed at the end of exponential growth in agitated cultures by SDS-PAGE and determined as lane-purity (in %). The EGFP-expression was similar between the various media in the range of 12.5–16.8 lane% (\(\mu = 0.068–0.115\) h\(^{-1}\)). The expression of EGFP is constitutive (chromosomal integration of one copy) and the growth-dependent with special correlation between \(\mu\) and the product formation. However, this had to be studied more detailed.

Determination of hemin consumption

The determination of hemin was performed with an aqueous 2-phase-extraction using acidified chloroform (Lombardo et al. 2005). A good correlation between the hemin concentration and the peak area (between 340–450 nm, neutralized base line) is visible, as the standard curve in Figure 6 shows. In protein-rich solutions, hemin adheres to the proteins and is coprecipitated by chloroform. Therefore, DMSO had to be added prior to extraction (Lombardo et al. 2005). The systematic influence of the proteins was analyzed in the YE-medium. The detection was limited to an offset of \(\sim 0.6\) mg l\(^{-1}\) of hemin (assuming constant protein content), because hemin could not be removed totally from the proteins. The correlation factor between hemin and the peak area could be kept constant.

\[
 y = 11.081 \times \\
 R^2 = 0.999
\]

Figure 6. Standard curve for the hemin detection (\(\bullet\)) with a correlation coefficient of 11.081 A nm l mg\(^{-1}\) (peak area per hemin concentration) determined with a 5 mg l\(^{-1}\) hemin solution (in 0.5% triethanolamine).

Discussion

We have demonstrated that L. tarentolae can be cultivated in various nutrient media with comparable growth characteristics in static suspension and agitated
The conclusion therefore is that the observed ability of close to neutral over a wide range of environmental pH (Zilberstein and Shapira 1994) in temperature (4.5–5.0) in combination with an increase during their life cycle. Differentiation of promastigotes by a decrease in pH. Van Hellemond et al. (1998) described, that Trypanosomatids excreted mainly partially oxidized products, like pyruvate, succinate and acetate during the energy metabolism. Especially abundance of nutrients, when cells consume more glucose than they can catabolize, leads to production of organic acids. Particularly the production of acetate is regarded as an overflow metabolism, comparable with the production of lactate or ethanol in other organisms.

The extent of the pH-shift differed between the media. The lowest value was detected in the TSB-medium (pH 6.0). Leishmania species are highly adaptable to different external pH values because they are exposed to extreme environmental changes (pH and temperature) during their life cycle. Differentiation of promastigotes to amastigotes was induced by a pH shift to an acidic environment (4.5–5.0) in combination with an increase in temperature (Zilberstein and Shapira 1994). Zilberstein et al. (1989) and Glaser et al. (1988) reported the ability of L. donovani to maintain the intracellular pH close to neutral over a wide range of environmental pH (5.0–7.4). The conclusion therefore is that the observed pH shifts in LEXSY Broth BHI and TSB-medium are in the physiological range. On the other hand, an optimal pH for membrane-associated transport and metabolism of promastigotes was described in the range of pH 7.0–7.5 (Zilberstein and Shapira 1994). For this reason, we tried to stabilize the pH in the neutral range and developed the TB- and YE-medium with a phosphate buffer system, where the pH drop could be limited to pH 6.9. The better growth performance compared with TSB-medium confirmed this step.

After glucose consumption, pH raised and resulted finally in morphological changes of the cells, which appeared to be very thin and partially degraded in YE-medium. In contrast, Glaser et al. (1988) observed swollen cells, when the external pH was greater than 7.5, because promastigotes lost the ability to maintain cytosolic pH in the physiological range. Further investigations are needed to define the optimal pH conditions for cultivation of L. tarentolae in a biotechnological production process.

Resulting cell densities in all examined media were extremely high in comparison to literature data (Table 1). During exponential growth cell densities >2.6 × 10^8 cells ml^{-1} and a total amount of 6.5 × 10^8–1 × 10^9 cells ml^{-1} could be easily obtained. Compared to the highest value from literature, which was reported for BHI-medium (Meehan et al. 2000), 3.5 times higher cell densities were achieved in LEXSY Broth BHI, in TB-and YE-medium even 4.5 to 5 higher cell densities could be attained.

The calculated growth parameters from the literature in Table 1, like N_{max}, \nu, doubling time (t_\nu) and generations (k) do not indicate, if the cell size is changing in dependence on the specific cell division rate \nu. The counted parameters \nu, t_\nu and k were determined under the assumption, that the cells are morphologically equal in dependency on \nu and time. Our studies allow the conclusion that the cell size is significantly reduced if \nu \neq \mu. occurs. This is clarified in Figure 4 at time ≥35 h.

The observed doubling times (6.7 h, YE-medium) are exceptionally small in comparison to mammalian cell cultures, where the cells double approximately once a day. These facts improve the potential of the L. tarentolae expression system as an alternative to commonly used cell cultures.

With the expression of EGFP, the usability of the YE-medium for expression of a recombinant protein could be proved. Furthermore, the adaptation of the cultivation to a 2 l bioreactor was successful. During the bioreactor cultivation, no shear stress sensitivity was observed at the process parameter settings used. This
confirms our previous observations (Fritsche and Pohl 2006).

The consumption of the essential supplement hemin could be monitored by a 2-phase-extraction method. The estimated yield coefficient is extremely high in comparison to the consumption of glucose, showing a low demand of this supplement. Hemin is an essential component for growing Leishmania species, but the detailed function inside the cell is currently unknown. It is important as prosthetic group of various proteins, a source of energy and essential as an intracellular regulator for metabolic pathways involved in respiration and protein synthesis (Pal and Joshi-Purandar 2001, Srivastava et al. 1997). With this analytical tool, an essential component for growth could be monitored and this facilitates new possibilities for further bioprocess strategies.

Acknowledgements

We would like to thank Jena Bioscience GmbH, especially Dr. M. Grün and also C. Kohls, for technical and financial support. Furthermore, acknowledge to Drs. P. Spangenberg and M. Meyer for critical reading of the manuscript and to M. Schmidt for help with the bioprocess technique. Thanks to the University of Applied Sciences Jena for funding C. Fritsche with grants of the Thüringer Kultusministerium.

References

